Основные понятия дифференциального исчисления и история их развития (Бакалавр)

Информация - Математика и статистика

Другие материалы по предмету Математика и статистика

Министерство общего и профессионального образования

Астраханский Государственный Педагогический Университет

 

 

 

 

 

Бакалаврская работа

Студентки IV курса физикоматематического факультета

Ночевной Светланы Павловны

 

 

Кафедра:

Математического анализа

 

 

Тема:

Основные понятия дифференциального исчисления и история их развития

 

 

 

 

 

 

 

 

 

 

Научный руководитель

ст. преподаватель

Пономарёва Н.Г.

 

 

Астрахань

1998 г.

План.

  1. Основные понятия дифференциального исчисления функций одной переменной.
  2. Определение производной и её геометрический смысл.
  3. Дифференциальные функции. Определение дифференциала.
  4. Инвариантность формы первого дифференциала.
  5. Дифференциал суммы, произведения и частного.
  6. Геометрическая интерпретация дифференциала.
  7. Основные понятия интегрального исчисления функций одной переменной.
  8. Первообразная функция и неопределённый интеграл.
  9. Геометрический смысл неопределённого интеграла.
  10. Основные свойства неопределённого интеграла.
  11. Метод непосредственного интегрирования.
  12. Метод замены переменной (способ подстановки).
  13. Интегрирование по частям.
  14. Определённый интеграл как предел интегральной суммы.
  15. Основные свойства определённого интеграла.
  16. Геометрический смысл определённого интеграла.
  17. Теорема НьютонаЛейбница.
  18. Формула НьютонаЛейбница.
  19. Замены переменных в определённых интегралах.
  20. Интегрирование по частям.
  21. Исторические сведения о возникновении и развитии основных понятий.
  22. Происхождение понятия определённого интеграла и инфинитезимальные методы Архимеда.
  23. От Архимеда к Кеплеру и Кавальери.
  24. Теорема Паскаля.
  25. О глубокой геометрии Лейбница.
  26. Метод флюксий Ньютона.
  27. Дифференциальные методы.

Цель работы: Изучить основные понятия дифференциального и интегрального исчислений и ознакомиться с историей их развития.

  1. Основные понятия дифференциального исчисления функций одной переменной.
  2. Определение производной и её геометрический смысл.

Пусть функция y = f(х) определена в окрестности точки хо. возьмём точку х1 этой окрестности, отличную от хо.

Определение. Разность х1 х0, которую обозначают символом х, будем называть приращением независимой переменной.

Определение.Подобным образом соответствующая разность

у1 у0 = f(х1) f(х0), обозначается символом у и называется приращением зависимой переменной, или приращением функции.

Получаются следующие соотношения:

х1 = х0 + х,

у1 = у0 + у,

у0 + у = f(х0 + х)

Так как у0 = f(х0),

тоу = f(х0 + х) f(х0).

 

Определение. Частное будем называть разностным отношением.

Выражение f(х0+х) f(х0)

х

(принимая что х0 имеет определённое постоянное значение) можно считать функцией приращения х.

Определение. Если предел этого выражения при х, стремящемся к нулю, существует, то его мы будем называть производной функции у = f(х) по х в точке х0

 

Итак, = = f(х0) = ух =у=

 

Пример. у=х2 . Вычислите производную для х=2.

Имеем: f(х+х) = (х+х)2 ,

Поэтому у = (х+х)2 х2 = 2хх+(х)2

Отсюда = 2х+х

 

Переходя к пределу получим: = 2х + = 2х.

 

Для того, чтобы отношение имело предел, необходимо, чтобы , то есть, чтобы функция рис.1

была непрерывной в точке х0.

Рассмотрим график функции у = f(х) (рис.1)

 

Легко заметить, что отношение равно тангенсу угла , образованного положительным направлением секущей, проходящей через точки А и В (соответствующие точкам х и х+х), с положительным направлением оси Ох, то есть, от А к В если теперь приращение х будет стремиться к нулю, точка В будет стремиться к А, то угол будет стремиться к , образованному положительным направлением касательной с положительным направлением оси Ох, а tg будет стремиться к tg .

Поэтому = tg (положительным направлением касательной считаем то направление, в котором х возрастает).

Таким образом, можно утверждать следующее:

Производная в данной точке х равна тангенсу угла, образованного положительным направлением касательной в соответствующей точке (х,f(х)) нашей кривой с положительным направлением оси Ох.

1.2 Дифференциальные функции. Определение дифференциала.

Определение. Функция у = f(х) называется дифференцированной в точке х, если её приращение у в этой точке можно представить в виде

у = f(х)х+(х)х,

где (х) = 0

Как видно из из определения, необходимым условием дифференцируемости является существование производной. Оказывается что это условие также и достаточно. В самом деле пусть существуют у=f(х)

Положим f(х), х 0

  1. , х = 0

При таком определ?/p>