Основні види і протоколи модуляції в модемах

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

нською фірмою AT&Т. Протокол V.21 є дуплексним, використовує ЧМ і частотне розділення каналів. Смуга частот телефонного каналу тональної частоти поділяється на два підканали. Нижній використовується модемом, що викликає, для передачі своїх даних, а верхній для передачі інформації від відповідаючого модема. При цьому в нижньому підканалі "1" передається сигналом з частотою 980 Гц, а "0" 1180 Гц. У верхньому підканалі "1" передається частотою 1650 Гц, а "0" 1850 Гц (рис.4).

Девіація частоти в обох каналах становить 100 Гц.

 

 

Швидкість модуляції і швидкість передачі даних становлять 300 Бод і 300 біт/с, відповідно. Незважаючи на низьку швидкість передачі, протокол V.21 використовується: 1) як "аварійний"; 2) у високошвидкісних протоколах на етапі встановлення зєднання, що передбачено Рекомендацією V. "Процедури початку сеансів передачі даних по КТМЗК"; 3) для передачі керуючих команд при факсимільному звязку.

Протокол Bell 103J сходиться з протоколом V.21 з точністю до номіналів частот, що використовуються. У нижньому підканалі логічний "0" передається частотою 1070 Гц, а "1" 1270 Гц, у верхньому підканалі: "0" 2025 Гц, "1" 2225 Гц, відповідно.

Протокол V.23. Забезпечує по комутованим каналам швидкість передачі інформації 600 і 1200 біт/с. Вищі, у порівнянні з протоколом V.21, швидкості досягаються за рахунок напівдуплексного режиму передачі. У цьому випадку модемами використовується вся смуга частот телефонного каналу, але в різні моменти часу.

При роботі з швидкістю 1200 біт/с для передачі "1" використовується носійна частота 1300 Гц, а для "0" 2100 Гц. При швидкості 600 біт/с "1" передається тією ж частотою, а "0" частотою 1700 Гц.

Даний протокол завдяки простоті та високій завадостійкості застосовують: 1) в пакетних радіомодемах, що використовуються разом з KB і УКВ радіостанціями; 2) в інформаційній системі Videotex (в ряді європейських країн).

Фазова модуляція. Існує декілька варіантів двопозиційної (бінарної) і багатопозиційної ФМ. Найпростішою є бінарна ФМ, коли фаза носійної змінюється на 0 або 180 при зміні полярності двійкових символів (рис.2г):

 

. (3)

 

Точний еталон фази, необхідний для когерентного детектування в фазовому детекторі (ФД), отримують нелінійним перетворенням вхідного фазомодульованого сигналу (рис.5а).

 

 

Подвоєння частоти сигналу, модульованого за фазою на 180 (3), призводить у цій схемі до усунення модуляції. Це дозволяє увімкнути після помножувача вузькосмуговий фільтр для послаблення завад. Потім діленням частоти на два отримують початкове коливання без модуляції фази і з меншим рівнем завад.

Однак фаза отриманої опорної напруги неоднозначна і може приймати одне з двох значень, зсунутих на 180. Крім того, під впливом завад можливі стрибки фази опорної напруги на 180, що приводить до зміни полярності посилок на виході ФД на зворотні, тобто до так званої зворотної роботи.

Для усунення цього недоліку ФМ використовується відносна фазова модуляція (ВФМ) (рис.2д). При ВФМ інформація передається зміною фази носійної залежно від символа, що передається: наприклад, при передачі 1 фаза носійної не змінюється, а при передачі 1 стрибком змінюється на 180. Оскільки при такому кодуванні помилка в прийнятті рішення за поточним двійковим символом викликатиме помилку і в наступному символі, то імовірність помилкового прийому при ВФМ вище, ніж при ФМ. Для ВФМ зазвичай використовується автокореляційний метод прийому, коли у ФД виконується порівняння фаз двох сусідніх посилок (рис.5б).

Щоб збільшити пропускну здатність, використовують багатопозиційну ФМ. Чотирипозиційна (дворівнева) ФМ (ФМ-4, QPSK Quadrature Phase Shift Keying) передбачає передачу двох двійкових символів (дібітів) одночасно.

Дібітам ставлять у відповідність початкові фази двох сусідніх елементів сигналу в лінії, наприклад: 00 45, 01 135, 11 225, 10 315.

На рис.6а зображена структурна схема модулятора ФМ-4.

 

 

Перетворювач коду (ПрК) перетворює вхідний ІКМ сигнал в два паралельних сигнали I і II (рис.6б), кожний з яких модулює за фазою на 180 синфазну (СИНФ) і квадратурну (KB) складові (рис.6в). В результаті підсумовування виходить сигнал з ФМ-4:

 

. (4)

 

Тобто сигнал з ФМ-4 буде, якщо у виразі (1) покласти .

Векторна діаграма утворення сигналу з ФМ-4 зображена на рис.6в. Так, якщо передавати в синфазному і квадратурному каналах символи +1, сигнал з ФМ-4 згідно (1) становитиме:

 

,

 

тобто, сумарний сигнал зсувається на 45 відносно синфазної і квадратурної складових.

У демодуляторі сигналу ФМ-4 (рис.7) для зняття модуляції використовується множення частоти вхідного сигналу на чотири. Після вузькосмугової фільтрації виконується ділення частоти і отриманий сигнал обертається на 45 для отримання синфазної складової (рис.6в), а квадратурну складову опорного сигналу одержують додатковим зсувом синфазної складової на 90 (рис.7).

Щоб зменшити смугу частот, використовують також вдосконалений варіант, який отримав назву квадратурної ФМ зі зсувом (OQPSK Offset QPSK), коли канал II системи ФМ-4 (рис.6б) зсувається на Т секунд відносно каналу I. Правила маніпуляції фаз у каналах вибираються такими, щоб при підсумовуванні сигналів максимальний стрибок фази не перевищив 90 (при ФМ-4 можливі стрибки на 90 і 180, які викликають паразитну амплітудну модуляцію обвідної). Отже, для OQPSK фазові зсуви відбуваються кожні Т секунд, а не 2Т, як п