Дипломная работа по предмету Радиоэлектроника

  • 21. Микроконтроллерная система взвешивания танков с жидким хлором
    Дипломы Радиоэлектроника
  • 22. Модернизация управляющего блока тюнера
    Дипломы Радиоэлектроника

    проточной водой в течение 1-2 мин при температуре 2020 С; декапировать торцы контактных площадок в 10%-ном растворе соляной кислоты в течение 3-5 сек при температуре 18-250 С; промыть платы холодной проточной водой в течение 1-2 мин при температуре 18-250 С; промыть платы в дистиллированной воде в течение 1-2 мин при температуре 18-250 С; активировать в растворе хлористого палладия, соляной кислоты, двухлористого олова и дистиллированной воды в течение 10 мин при температуре 18-250 С; промыть платы в дистиллированной воде в течение 1-2 мин при температуре 2020 С; промыть платы в холодной проточной воде в течение 1-2 мин при температуре 2020 С; обработать платы в растворе ускорителя в течение 5 мин при температуре 2020 С; промыть платы в холодной проточной воде в течение 1-2 мин при температуре 2020 С; произвести операцию электрополировки с целью снятия металлического палладия с поверхности платы в течение 2 мин при температуре 2020 С; промыть платы горячей проточной водой в течение 2-3 мин при температуре 5020 С; протереть поверхность платы бязевым раствором в течение 2-3 мин; промыть платы холодной проточной водой в течение 1-2 мин при температуре 2020 С; произвести визуальный контроль электрополировки (плата должна иметь блестящий или матовый вид, при появлении на плате темных пятен, которые не удаляются во время промывки, необходимо увеличить время электрополировки до 6 мин); произвести операцию химического меднения в течение 10 мин при температуре 2020 С; промыть платы в холодной проточной воде в течение 1-2 мин при температуре 2020 С; визуально контролировать покрытие в отверстиях.

  • 23. Описание работы электрической схемы охранного устройства с автодозвоном по телефонной линии
    Дипломы Радиоэлектроника

    При нажатии на кнопку SA1 напряжение питания подаётся на схему, в результате чего происходит зарядка конденсатора С1 (время, необходимое для выхода из охраняемого помещения), и элемент DD1.4 переводит RS-триггер в состояние ожидания (на выходе DD1.1 присутствует логический «0», датчик охраны нормально замкнутый). При срабатывании датчика (размыкании) на выходе DD1.1 появляется логическая «1», что приводит к запуску схемы счёта на ИС DD2. С выхода 4 DD2 секундные импульсы подаются на тактовый вход DD4, что приводит к появлению на соответствующих выходах DD4 логической «1», которая через RS-триггер на DD5 управляет ключом поднятия трубки на R14, R13, VT2, VT3, а также через ключ R15, VT1 имитирует нажатие клавиши «повтор» телефонной части устройства. При появлении логической «1» на выводе 11 DD4 разрешается подача звукового сигнала с выхода 7 DD2 через C8 на базу VT5 и далее в телефонную линию.

  • 24. Организация пассажирских перевозок
    Дипломы Радиоэлектроника
  • 25. Оценка ассортимента и конкурентоспособности автомобилей
    Дипломы Радиоэлектроника
  • 26. Оценка себестоимости тепловой энергии, основанной на графике Россандра
    Дипломы Радиоэлектроника
  • 27. Передающее устройство одноволоконной оптической сети
    Дипломы Радиоэлектроника

    В процессе работы составлен обзор методов передачи сигналов по одному оптическому волокну в двух направлениях и определён способ увеличения пропускной способности каналов, подходящий для использования на соединительных линиях городской телефонной сети.

  • 28. ПЛИС Xilinx семейства Virtex™
    Дипломы Радиоэлектроника

    Интерфейс, поддерживающий этот режим, идентичен интерфейсу подчиненного режима, за исключением того, что для генерации синхросигнала конфигурирования используется внутренний осциллятор FPGA. Частота для этого синхросигнала может быть выбрана из широкого диапазона значений, но по умолчанию всегда используется низкая частота. Переключение на более высокую частоту происходит данными, которые распознаются микросхемой в самом конфигурационном потоке, после чего оставшаяся часть потока загружается уже с новой скоростью. Переключение снова на более низкую частоту запрещается. Частота синхронизации CCLK устанавливается выбором ConfigRate в программе генерации конфигурационного потока. Максимальная частота CCLK, которая может быть выбрана 60 МГц. Выбирая конкретную частоту CCLK, необходимо убедиться, что используемые ПЗУ и все соединенные в цепочку микросхемы FPGA рассчитаны на конфигурирование в таком темпе.

  • 29. Полупроводниковые приборы
    Дипломы Радиоэлектроника
  • 30. Получение тонкопленочных электретов на основе фторопласта - 4 и изготовление приборов на их основе
    Дипломы Радиоэлектроника

    Указанные процессы находят логическое объяснение в соответствии с положением о существовании на поверхности политетрафторэтилена ориентированных диполей. Прикладываемое к образцам переменное электрическое поле увеличивает амплитуду колебаний дипольных участков молекул на поверхности диэлектрика, а подобное интенсивное молекулярное движение ведет к выталкиванию захваченных электронов с ловушек и, после их рекомбинации, к снижению величины гомозаряда. Также в литературе упоминается изменение свойств электретных пленочных мембран при увеличении степени их натяжения, то есть при изменении деформации молекулярных цепочек, приводящее к ускоренному спаду заряда. Аналогичное явление быстрого спада гомозаряда в мембранах наблюдалось при попытке изготовления головных телефонов на базе заряженных пленок политетрафторэтилена. Создание в пленках политетрафторэтилена ультразвуковых механических упругих деформаций приводило к выбросу электронов с ловушек 0,50,6 эВ и ускоренному спаду эффективной поверхностной плотности заряда. Причем увеличение интенсивности ультразвукового воздействия приводило к нелинейному снижению уровня стабильного заряда. Суммируя наблюдаемые экспериментальные данные можно сказать, что любые воздействия, приводящие к увеличению амплитуды колебаний молекулярных цепочек или их фрагментов (повышение температуры, механическая деформация, электрические или магнитные поля и т.п.), будут способствовать освобождению захваченных этими молекулами электронов и ускоренному спаду гомозаряда. Следует отметить, что уже предпринимались попытки связать характерные особенности электретного эффекта в пленках фторопласт4 и фторопласт10 со структурой и дефектами структуры материала. При этом также предполагалось существование дипольных структур вблизи поверхности пленок. Предполагалось, что внедренные при электретировании электроны захватываются глубокими ловушками, а с более мелких локальных уровней за счет флуктуаций теплового движения освобождаются дырки. Пара электрондырка образует квазидиполь и в целом электрет нейтрален. При поляризации диэлектрика квазидиполь направлен противоположно внешнему полю и ничем не отличается от обычных дипольных молекул. Под действием сильных флуктуаций теплового движения электрон высвобождается из ловушки и диполь разрушается. Разрушение квазидиполей электрондырка происходит также при изменении надмолекулярной структуры фторопластов и при фазовых переходах. Однако модель основывается на предположении, что в материале изначально на ловушках находятся дырки в концентрации достаточной для нейтрализации внедренных электронов. Кроме того, накопление свободных дырок вблизи поверхности, где сосредоточен гомозаряд, при образовании квазидиполей должно приводить к резкому падению поверхностного сопротивления материала, что не отмечалось в практических исследованиях.

  • 31. Постановка лабораторной работы по курсу волоконнооптические системы связи
    Дипломы Радиоэлектроника

    In the process of work is designed principle and structured model schemes of laboratory installation, are determined its composition, requirements to safety, when working in the labs., requirements to reliability and the others.

  • 32. Приёмо-передающий модуль компьютерной радиосети
    Дипломы Радиоэлектроника
  • 33. Проект АТП на 600 автомобилей с разработкой отделения и тех.оборудованием
    Дипломы Радиоэлектроника
  • 34. Проект лабораторного стенда по изучению частотного электропривода на базе автономного инвертора напр...
    Дипломы Радиоэлектроника

    После выполнения лабораторной работы учащийся обязан составить отчет с анализом полученных результатов и ответами на контрольные вопросы, приводимые в описании лабораторной работы. Отчет должен содержать название и номер лабораторной работы, цель работы и ее краткое содержание, схему исследуемого устройства, перечень используемой аппаратуры, таблицы с результатами измерений и вычислений, формулы, по которым производились вычисления, и значения отдельных расчетных констант, графики, выводы и ответы на контрольные вопросы. Желательно для оформления отчетов по лабораторным работам иметь специальные бланки, облегчающие учащимся работу и оказывающие на них дисциплинирующее действие. Правильное оформление отчетов по лабораторным работам воспитывает у учащихся аккуратность, четкость мышления, последовательность изложения материала. Записи в отчетах должны выполняться четко и аккуратно чернилами или пастой без помарок. Оформление текста, таблиц, расчетов и графиков должно соответствовать требованиям ГОСТ ЕСКД. Графики вычерчиваются на специальной или миллиметровой бумаге формата 11. На осях координат обязательно надписываются откладываемые величины, указываются единицы их измерения и масштабы, а также наносятся масштабные деления. Кривые графиков следует проводить между экспериментально полученными точками усредненно, учитывая ожидаемые теоретические результаты. Отдельные точки в силу случайных или систематических погрешностей могут оказаться за пределами графика, и их следует отбросить. В тех областях, где ход кривой монотонным, можно ограничиться небольшим количеством измерений, тогда как в областях точек перегиба или экстремумов количество измерении необходимо увеличить так, чтобы получить достоверный ход кривой. Часто для удобства сравнения результатов опыта на одних осях координат строится несколько кривых, которые обязательно должны быть пронумерованы в соответствии с вариантами в таблицах измерения и расшифрованы в примечаниях к графикам. Можно разные кривые выполнять в различных цветах. Для снятия частотных характеристик в достаточно широком диапазоне частот следует пользоваться логарифмическим масштабом частоты.

  • 35. Проект ОАО "Челны холод" с разработкой агрегатного участка и стенда по обкатке коробок передач для легковых и грузовых автомобилей грузоподъемностью менее 3,5т.
    Дипломы Радиоэлектроника
  • 36. Проект ОАО "Челны холод" с разработкой моторного участка и стенда по обкатке двигателей КамАЗ, МАЗ, ЯМЗ
    Дипломы Радиоэлектроника
  • 37. Проект реконструкции зоны текущего ремонта ОАО «ПАК» с детальной разработкой универсального канавного подъемника для замены коробки передач и редуктора автобуса
    Дипломы Радиоэлектроника
  • 38. Проект реконструкции ОАО «Набережночелнинское ГАТП» с разработкой участка по диагностике, окраске и стенда проверки тормозов автобусов
    Дипломы Радиоэлектроника
  • 39. Проект узла коммутации телеграфных связей в областном центре
    Дипломы Радиоэлектроника

    На городских линиях связи телеграфная каналообразующая аппаратура устанавливается в местах скопления абонентов или на АТС. Предположим в одном микрорайоне имеется 13 абонентских установок и 1 отделение связи . В этом случае общее число каналов будет равно 14 . Включаем эти каналы в модуль ТММ аппаратуры ТВР . Телеграфный мульдекс с модемом ТММ обеспечивает организацию 45 стартстопных 50-бодных каналов или меньшее количество каналов других типов и с другими скоростями . На другой стороне ТЧ канала в узле связи тоже устанавливается блок ТММ аппаратуры ТВР . Один канал включается в ЭТК - КС , другие каналы подключаются к линейно - канальному оборудованию ЭСК 2.4. Линии от других городских отделений связи и абонентских установок организуются по аналогичному принципу. Если абонентские установки и городские отделения связи находятся вблизи от телеграфного узла , то они могут включаться в телеграфную станцию без аппаратуры уплотнения. Абонентские установки в сети РОСПАК не включаются в каналообразующую аппаратуру , а идут прямо на магистральное направление . Так как по исходным данным в проектируемом узле предусматриваем 55 абонентских установок РОСПАК , то для передачи информации требуется 1 ТЧ - канала . На первом магистральном направлении 108 каналов , поэтому берем 2 блока ТММ аппаратуры ТВР. На втором направлении имеется 54 канала , поэтому берем 2 модуля ТММ , каждый из которых может организовать 45 50-бодных каналов . На третьем и четвертом магистральных направлениях соответственно имеется 90 и 108 каналов. Поэтому на каждом из этих направлений мы берем два и три модуля ТММ аппаратуры ТВР . Выборка каналообразующей телеграфной аппаратуры на магистральном направлении приводится в таблице 4.

  • 40. Проект цеха столярно- строительных изделий
    Дипломы Радиоэлектроника