Контрольная работа по предмету Биология

  • 161. Проблема множественности разумных миров и изучение НЛО
    Контрольная работа Биология

    Краткий обзор современной астрономической картины мира показывает, что астрономия в XX веке кардинально преобразовала старые классические представления о Вселенной, ее структуре и эволюции, пережила глубокую научную революцию, которая изменила способ астрономического познания. На смену классическому пришел “неклассический” способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания:

    • Основа астрономического познания признание объективного существования предмета астрономической науки (космических тел, их систем и Вселенной в целом) и их принципиальной познаваемости научно-рациональными средствами (причем не только структурного, но и исторического аспекта Вселенной). Следовательно, можно говорить о полной победе материалистического принципа познаваемости природы, истории Вселенной в системе методологии астрономии XX века.
    • Эмпирическая основа современной астрономии наблюдение во всеволновом диапазоне. Теоретические исследования и экспериментальные попытки регистрации гравитационных волн открывают перспективы развития гравитационной астрономии. Сведения о космосе несут не только волновые процессы, но и частицы (космические лучи, нейтрино). Причем важная особенность наблюдений во внеоптических диапазонах состоит в том, что они дают информацию, как правило, о нестационарных процессах Вселенной.
    • Теоретическая основа современной астрономии не только классическая механика, но и релятивистская и квантовая механика, квантовая теория поля. Классическая механика не потеряла своего значения для астрономического познания (прежде всего, для объяснения процессов, происходящих в Солнечной системе). Как и прежде, все основные расчеты движений тел планетной системы и искусственных спутников Земли, Луны и планет, космических аппаратов, созданных человеком, осуществляются (в силу слабости релятивистских и квантовых эффектов для этих систем) на базе ньютоновской механики.
    • Физическая реальность состоит из трех качественно несводимых друг к другу уровней: микро-, макро- и мегамиров. В системе астрономического познания выделяются две большие подсистемы: во-первых, астрономические науки, изучающие закономерности космических тел и процессов макроуровня (небесная механика, астродинамика, астрометрия и др.); во-вторых, астрономические науки, изучающие космические процессы на уровне мегамира (внегалактическая астрономия, релятивистская космология и др.). Считается, что исследования носят космологический характер, если предмет изучения имеет линейные размеры, превышающие 109 пк; именно здесь проходит разграничительная линия между “обычным” астрономическим и космологическим масштабами.
  • 162. Проблема пространства и времени в истории науки
    Контрольная работа Биология

    Еще в древности было подмечено, что в спокойно плывущем по глади реки корабле путешественник не может сказать, движется он или стоит на месте, если не видит берега. Галилей распространил эти наблюдения и на физические опыты. Он писал, что столь же безразличным к движению окажется и камень, "падающий с высоты корабельной мачты; этот камень всегда окончит свое падение, ударив в одно и то же место как в том случае, когда корабль неподвижен, так и в том, когда он идет быстрым ходом... Я... произвел этот опыт; но еще перед тем естественное рассуждение привело меня к твердому убеждению в том, что из него должно получиться именно то, что действительно и получилось". Следовательно, никакими опытами нельзя установить, движемся мы или нет, если движение происходит без ускорения. В этом - суть "принципа относительности" Галилея. Ньютон был согласен с этим принципом. И все-таки ему казалось, что должно быть нечто незыблемое (человек религиозный, он называл пространство "бесконечным чувствилищем бога"), некая основа, опираясь на которую, наблюдатель может ощутить движение без ускорения. Абсолютное пространство и было для Ньютона неподвижной системой отсчета. Физика XVIII столетия приняла принципы Ньютона и пользовалась ими весьма плодотворно. Единственной деталью, портившей фасад стройного здания, была скорость света. Приходилось считать ее бесконечно большой, так как в пустом пространстве только такой она и могла быть, а наблюдения этого не подтверждали. Ещё в 1675 г. датский астроном Олаус Ремер представил в Парижскую академию наук мемуар "Относительно доказательства движения света". В работе описывались наблюдения за Юпитером и его спутником Ио. Оказывается, в январе Ио появлялась из-за Юпитера на целых 16 минут 36 секунд раньше, чем в июне. Поскольку в июне Земля и Юпитер находились по разные стороны от Солнца, а в январе - по одну сторону, оставалось предположить, что все дело в конечной скорости света. Ему требовалось в каждом случае проходить до Земли иное расстояние. Несложное деление - и Ремер получает первую в истории науки величину скорости света: около 280 тыс. километров в секунду, - превосходный результат, особенно если принять во внимание неточность часов того времени и другие ошибки.

  • 163. Проблемы происхождения и развития Земли
    Контрольная работа Биология

    В XVIII веке было выдвинуто две основные теории происхождения Земли, которые дополняли друг друга, поэтому в литературе они часто упоминаются под общим названием как гипотеза Канта-Лалласа. Поскольку наука не располагала в то время более приемлемыми объяснениями, у этой теории было в XIX веке множество последователей.

    • В 1755 году немецкий философ Иммануил Кант сформулировал теорию, согласно которой солнечная система возникла из некой первичной материи, до того свободно рассеянной в космосе. Частицы этой материи перемещались в различных направлениях и, сталкиваясь друг с другом, теряли скорость. Наиболее тяжелые и плотные из них под действием силы притяжения соединялись друг с другом, образуя центральный сгусток - Солнце, которое, в свою очередь, притягивало более удаленные, мелкие и легкие частицы. Таким образом, возникло некоторое количество вращающихся тел, траектории которых взаимно пересекались. Часть этих тел, первоначально двигавшихся в противоположных направлениях, в конечном счете, были втянуты в единый поток и образовали кольца газообразной материи, расположенные приблизительно в одной плоскости и вращающиеся вокруг Солнца в одном направлении, не мешая друг другу. В отдельных кольцах образовывались более плотные ядра, к которым постепенно притягивались более легкие частицы, формируя шаровидные скопления материи. Так складывались планеты, которые продолжали кружить вокруг Солнца в той же плоскости, что и первоначальные кольца газообразного вещества.
    • В 1796 году французский математик и астроном Пьер-Симон Лаплас выдвинул теорию, согласно которой Солнце существовало первоначально в виде огромной раскаленной газообразной туманности («небулы») с незначительной плотностью, но зато колоссальных размеров. Эта туманность первоначально медленно вращалась в пространстве. Под влиянием сил гравитации она постепенно сжималась, причем скорость ее вращения увеличивалась. Возрастающая в результате центробежная сила придавала туманности уплощенную, а затем и линзовидную форму. В экваториальной плоскости туманности соотношение между притяжением и центробежной силой изменялось в пользу последней, так что в конечном счете, масса вещества, скопившегося в экваториальной зоне туманности, отделилась от остального тела и образовала кольцо. От продолжавшей вращаться туманности последовательно отделялись все новые кольца, которые, конденсируясь в определенных точках, постепенно превращались в планеты и другие тела солнечной системы. В общей сложности от первоначальной туманности отделилось десять колец, распавшихся на девять планет и пояс астероидов - мелких небесных тел. Спутники отдельных планет сложились из вещества вторичных колец, оторвавшихся от раскаленной газообразной массы планет. Вследствие продолжавшегося уплотнения материи температура новообразованных тел была исключительно высокой. В то время и наша Земля представляла собой раскаленный газообразный шар, светившийся подобно звезде. Постепенно, однако, этот шар остывал, его материя переходила в жидкое состояние, а затем, по мере дальнейшего охлаждения, на его поверхности стала образовываться твердая кора. Эта кора была окутана тяжелыми атмосферными парами, из которых при остывании конденсировалась вода.
  • 164. Производство гипотез в естествознании. Наука эпохи Возрождения. Гипотезы происхождения человека
    Контрольная работа Биология

    Френсис Бэкон (1561 - 1626) вошел в историю логики и философии как основоположник индуктивного метода, ориентированного на опытное исследование природы. Античная и средневековая наука опирались исключительно на дедуктивную логику, которая впервые была создана Аристотелем в форме силлогистики. Но дедукция учит, как выводить частные заключения из общих высказываний, и, по мнению Бэкона, не подходит для исследования природы, где приходится находить общие выводы с помощью отдельных фактов. Поэтому необходимо было создать новую, индуктивную логику, которая анализирует способы умозаключений от частных высказываний к общим. Самым элементарным способом индуктивных рассуждений является полная индукция, которая основывается на простом перечислении всех частных случаев, обладающих определенным общим свойством. Ее заключение имеет достоверный характер, и на этом основании ее нередко рассматривают как особый вид дедуктивного умозаключения. По результату полную индукцию действительно можно считать дедуктивным рассуждением, но по движению мысли от единичных суждений к общему заключению она имеет типично индуктивный характер. Но наиболее распространенной формой рассуждения от единичного к общему является неполная индукция, когда на основе выявления некоторого наблюдаемого общего свойства у конечного числа случаев делают заключение о его наличии у непроверенных случаев или класса в целом. Очевидно, что такое заключение всегда содержит риск оказаться ошибочным. Популярным примером может служить индуктивное обобщение «все лебеди - белые», оказавшееся неверным после обнаружения в Австралии черных лебедей. Таким образом, в отличие от дедукции заключение индукции является не достоверно истинным, а только вероятным в той или иной степени. Это объясняется тем, что связь между посылками и заключением дедукции носит логически необходимый характер, тогда как в индуктивном рассуждении она имеет лишь правдоподобный или вероятный характер. Другими словами, посылки индуктивного рассуждения лишь в определенной степени подтверждают заключение. Чтобы повысить его степень подтверждения, Бэкон стал рассматривать не только аналогичные, или сходные случаи, которые подтверждают заключение, но и случаи несходные, которые опровергают его. На основе построения таблиц сходства и различия Бэкон усовершенствовал способ поиска индуктивных обобщений, которые называл формой исследуемых явлений. В XIX веке Джон Стюарт Милль назвал их причинами и значительно расширил и улучшил приемы их поиска, которые обычно излагаются в учебниках по традиционной логике. Но Ф. Бэкон и даже Д.С. Милль слишком преувеличивали значение созданных ими индуктивных методов. В частности, Бэкон рассматривал свои каноны индукции как самый надежный метод для открытия новых истин о природе.

  • 165. Происхождение и принципы эволюции: между равновесием и нелинейностью
    Контрольная работа Биология

    При расщеплении ядер с большими номерами можно получить ядра с меньшими номерами и выделить при этом энергию. Например, разделяя ядро 235U на два меньших, на что тоже нужна энергия (энергия связи на нуклон примерно равна 7,6 МэВ у 235U, a у ядер средних размеров 8,6 МэВ, т.е. разница на один нуклон составляет 1 МэВ), на каждое ядро урана получим 200 МэВ при расщеплении его на два меньших, например барий и криптон. Но самопроизвольно этот процесс не начинается, он должен быть запущен. В случае с 235U таким спусковым крючком служит захват ядром нейтрона, а далее реакция идет сама по типу цепной реакции деления. Ядра с несбалансированным числом протонов и нейтронов могут (при определенных условиях) превращаться в другие ядра, испуская ядро атома гелия (А-частицу) или электрон (+ или -, так называемый процесс распада), или остаться после испускания частицы в возбужденном состоянии, а потом испустить у-квант. Тяжелые радиоактивные элементы распадаются поочередно этими способами, образуя ветви или радиоактивные семейства. Спадение кривой для тяжелых элементов связано с ростом куло-новского отталкивания между протонами. Наличие систематического хода кривой с максимумом при А порядка 5060 (в середине Периодической системы элементов Д.И. Менделеева: от криптона до цинка) показывает, что эти элементы обладают наибольшей связью и наиболее устойчивы. Их энергия связи достигает 8,6 МэВ/нуклон, тогда как у урана 7,5 МэВ/нуклон. Такая зависимость делает возможными два процесса: деление тяжелых ядер на несколько легких и синтез легких ядер в одно ядро. Оба эти процесса должны сопровождаться выделением большого количества энергии. Так, деление ядра с массовым числом А - 240 (с удельной энергией связи 7,5 МэВ) на два пополам с А = 120 (удельная энергия связи равна 8,5 МэВ) привело бы к высвобождению энергии в 240 МэВ. Реакция синтеза двух ядер тяжелого водорода с А = 2 в ядро гелия привела бы к выделению энергии в 24 МэВ. Для сравнения, сгорание угля до СО2 (соединение углерода с двумя атомами кислорода) дает всего 5 эВ.

  • 166. Происхождение человека
    Контрольная работа Биология

    Модель эволюцииМодель сотворенияКонкретные фактыЖизнь развилась из неживой материи путем случайной химической эволюции (самозарождения)Жизнь происходит только от уже существующей жизни; изначально создана разумным Создателем1. Жизнь происходит только от уже существующей жизни. 2. Сложный генетический код не может образоваться случайноСвидетельство, ожидаемое от ископаемых: 1) постепенное появление простых форм жизни; 2) переходные формы как связующие звеньяСвидетельство, ожидаемое от ископаемых: 1) внезапное появление в большом разнообразии сложных форм; 2) пробелы, разделяющие основные группы; отсутствие связующих формСвидетельство ископаемых: 1) внезапное появление в большом разнообразии сложных организмов; 2) каждый новый вид обособлен от предшествующих видов; отсутствие связующих формНовые виды возникают постепенно; зачатки недоразвитых костей и органов на различных промежуточных стадияхНикакие новые виды не появляются постепенно; отсутствие недоразвитых костей или органов; все части полностью сформированыНикакие новые виды не появляются постепенно, хотя и существует много разновидностей; отсутствие недоразвитых костей или органовМутации: в конечном счете полезны; порождают новые признакиМутации вредны для сложных организмов; не приводят ни к чему новомуНебольшие мутации вредны, значительные - смертельны; никогда не приводят ни к чему новомуПостепенное возникновение цивилизации из грубых, звероподобных начальных стадийЦивилизация возникает одновременно с человеком; сложная с самого началаЦивилизация возникает одновременно с человеком; жители пещер - современники тех цивилизованных людейРечь эволюционировала от простых звуков животных в сложные современные языкиРечь возникает одновременно с человеком; древние языки сложны и обнаруживают завершенностьРечь возникает одновременно с человеком; древние языки часто более сложные, чем современныеПоявление человека миллионы лет тому назадПоявление человека около 6 000 лет тому назадДревнейшим записям приблизительно всего лишь 5 000 лет

  • 167. Промышленная биотехнология
    Контрольная работа Биология

    Преимущества предлагаемой комбинированной технологии по сравнению, например, с традиционной аэробной очисткой (аэротенки, биофильтры, биопруды) заключаются в следующем.

    1. Кардинальное снижение энергозатрат на аэрацию, так как предварительная анаэробная обработка концентрированных сточных вод, естественно, не требует затрат энергии на аэрацию, удаляяя при этом 90% и более ХПК загрязнений; электроэнергия на анаэробной стадии необходима только для перекачки сточных вод, как правило, не более 0.02-0.06 кВт ч/м3.
    2. Органические загрязнения сточных вод как минимум на 90% конвертируются в ценный энергоноситель - метан, причем выходы последнего достаточно высоки - 0.35 м3 с кг удаленного ХПК;
    3. Прирост избыточной биомассы по сухому веществу в 5-10 раз меньше, чем при чисто аэробной очистке, а по объему - в 25-50 раз. Избыточная биомасса стабильна, не загнивает при хранении, легко обезвоживается без применения реагентов. Высокое содержание в анаэробной биомассе витамина В12 делает ее ценным сырьем для получения кормовых добавок.
    4. Применительно к очистке концентрированных стоков анаэробные системы, как правило, значительно производительнее аэробных. Это связано с тем, что в анаэробных реакторах достигается очень высокая концентрация биомассы - до 30-50 г/л и более, тогда как в аэробных сооружениях концентрация биомассы жестко ограничена возможностями аэрирующих устройств (обычно не более 4-8 г/л). Вследствие этого, производительность современных высокоскоростных анаэробных реакторов типа UASB составляет 15-20 кг ХПК/м3 сут (для сравнения: окислительная мощность аэротанков и аэробных биофильтров не превышает 5-10 кг ХПК/м3 сут, а в большинстве случаев - 2-3 кг ХПК/м3 сут). Последние же конструкции анаэробных реакторов (EGSB, IC-UASB реакторы с псевдоожиженным слоем и др.) способны эффективно работать в промышленном масштабе с производительностью, на порядок превосходящей максимально возможную для аэробных систем (до 30-60 кг ХПК/м3 сут).
    5. Анаэробные реакторы устойчивы к длительным перерывам в подаче сточной воды, что позволяет эффективно использовать их для очистки стоков сезонных производств.
    6. Применительно к сточным водам, не содержащим биогенные элементы, анаэробная очистка требует в 5-10 раз меньшей биогенной подпитки, чем аэробная.
    7. Конструкция анаэробных реакторов может быть полностью герметичной, что предотвращает распространение дурно пахнущих веществ и микробиальных аэрозолей вокруг очистных сооружений. Вследствие этого, может быть значительно сокращена санитарно-защитная зона.
    8. Компактность и санитарно-гигиеническая безопасность современных анаэробных биореакторов делает возможным их широкое использование для локальной очистки концентрированных промышленных сточных вод предприятий, расположенных в населенных пунктах. Избыточная анаэробная биомассы от биореакторов может сбрасываться в канализационную сеть с очищенной сточной водой без превышения норм приема по взвешенным веществам, либо периодически вывозиться на сельскохозяйственные угодья как удобрение или на продажу для запуска других анаэробных реакторов.
    9. Минимальный объем анаэробных реакторов не ограничен. В отличие от аэробной очистки, эксплуатация небольших установок (20-50 м3) не представляет трудностей,
    10. Промежуточные и конечные продукты анаэробной очистки (ЛЖК, объем и состав биогаза) легко поддаются количественному определению. Это облегчает применение автоматизированного контроля и управления.
    11. Комбинированная технология может быть очень органично интегрирована в различные системы глубокой утилизации сточных вод и рекуперации загрязнений, включающие в себя:
  • 168. Пространство и время в специальной теории относительности. Основные закономерности развития биогеценоза
    Контрольная работа Биология

    ·Первичные сукцессии начинаются на лишенных жизни местах - на скалах, песчаных дюнах, наносах рек, застывших лавовых потоках и т. п. При заселении подобных участков такие неприхотливые к условиям среды живые организмы, как бактерии, циано-бактерии, некоторые водоросли, накипные лишайники, необратимо изменяют свое местообитание и постоянно сменяют друг друга. Основная роль в этом процессе принадлежит накоплению отмерших растительных остатков или продуктов их разложения. Многие нитчатые цианобактерии поглощают из воздуха азот и обогащают им среду, еще малопригодную для жизни. Лишайники играют существенную роль в почвообразовательном процессе, так как, выделяя органические кислоты, они растворяют и разрушают горные породы, на которых поселяются, а за счет разложения их слоевищ происходит формирование почвенного гумуса. Бактерии путем расщепления органических веществ гумуса способствуют накоплению элементов минерального питания. Постепенно формируется почва, изменяется гидрологический режим участка, его микроклимат. Таким образом, лишайники и другие прокариоты и эукариоты создают условия для других, более совершенных организмов, в том числе высших растений и животных. Такая смена экосистемы длится тысячи лет.

  • 169. Процесс фотосинтеза
    Контрольная работа Биология

    При исследованиях первичной биологической продуктивности наземных биогеоценозов определяют ряд показателей, которые затем используют в качестве отдельных статей баланса органические вещества на конкретных участках. Продукция, определяемая с учётом затрат вещества и энергии на процессы метаболизма самих организмов-продуцентов, называется первичной брутто-продукцией, или валовой продукцией (обычно обозначают GPP от англ, gross primary production). Разность между первичной брутто-продукцией и затратами растений на дыхание (Ra) определяет первичную нетто-продукцию NPP (от англ, net primary production). В лесном фитоценозе NPP включает в себя не только чистую продукцию прироста за учитываемый период (истинный прирост фитомассы) NEP (net ecosystem production), но и продукцию, перешедшую за то же время в опад (листья, цветки, семена и др.) и отпад (отмершие деревья, сучья и др.), которые суммарно обозначаются L, а также часть продукции живых растений, пошедшую на корм животных-фитофагов (консумпцию) Сa. Сумму этих показателей часто называют гетеротрофным дыханием (Rh), поскольку энергия в обоих этих потоках (Rh=L+Ca) освобождается главным образом с участием гетеротрофных организмов. Для консументов, независимо от их трофической специализации, применяют иную схему. Отчуждаемая при консумпции фитофагами продукция растений в некотором количестве поедается животными, остальная (огрызки, объедки) поступает в опад. Съеденная пища частично ассимилируется организмами, частично экскре-тируется и поступает в детрит. За счёт продуктов ассимиляции происходит прирост биомассы, т. е. формируется продукция и поддерживаются процессы метаболизма. В продукцию включаются вещество или энергия прироста (привеса) животных за изучаемый период и прироста потомства. Эти величины, с учётом вещества и энергии элиминированных особей, характеризуют прирост биомассы животных. Биомасса животных-иммигрантов в продукцию не включается. При этом ассимилированная пища и прирост биомассы животных соответствуют общей (брутто) и чистой (нетто) продукции автотрофов.

  • 170. Процессы брожения. Санитарный надзор. Виды дезинфекции
    Контрольная работа Биология

     

    1. Закон РФ "О качестве и безопасности пищевых продуктов" от 02.01.2000 г. № 29-ФЗ (ред. от 31.03.2006 № 45-ФЗ);
    2. Постановление Правительства Российской Федерации "Об утверждении Правил оказания услуг общественного питания" от 15. 08.1997 г. № 1036 (ред.21.05.2001, № 389)
    3. СП 2.3.6.1079-01 "Санитарно-эпидемиологические требования к организациям общественного питания, изготовлению и оборотоспособности в них пищевых продуктов продовольственного сырья" с изменениями от 01.04.2003 г.
    4. СанПин 2.2.1/2.1.1.1200-03 "Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов"
    5. Лемеза Н.А. Биология. / Лемеза Н.А., Камлюк Л.В., Лисов Н.Д. - М.: Айрис-пресс, 2005.
    6. Румянцев Г.И. Гигиена: Учебник для вузов. - Ростов-на-Дону: Феникс, 2000.
    7. Грин Н., Стаут У., Тейлор Д. Биология: В 3-х т. Т. 2// Под ред. Р.Сопера. - М.: Мир, 2003. - 325с.
    8. Гриневич А.Г., Босенко А.М. Техническая микробиология. - М.: Феникс, 2001. - 168с.
    9. . Жарикова Г. Г., Казьмина А. О. Микробиология, маниатрия и гигиена пищевых продуктов: Практикум. М.: Гелан, 2004.
    10. Жарикова Г.Г. Микробиология продовольственных товаров. М.: Академия, 2006.
    11. Кретович В.Л. Основы биохимии растений. - М.: Наука, 2007.
    12. Марри Р., Греннер Д., Мейес П. и др. Биохимия человека: Перевод с английского. М.: Мир, 2004.
    13. Мюллер Г. Микробиология продуктов растительного происхождения. М.: Пищевая промышленность, 2006.
    14. Современная микробиология. Прокариоты: В 2-х томах. Пер. с англ./Под ред. Й. Ленглера, Г. Древса, Г. Шлегеля. М.: Мир, 2005.
  • 171. Разведение и содержание аквариумных рыб с элементами исследования
    Контрольная работа Биология

    Самая большая и одновременно лучше всего исследованная группа костистые рыбы. От 5 тыс. до 8 тыс. видов живут (периодически или постоянно) в пресной воде, из них около 4 тыс. видов в принципе могут содержаться в аквариуме. Однако в системе международной торговли обращается «всего» 300 видов. Рыбы первичные водные челюстноротные позвоночные (Gnathostomata), заселившие воды земного шара и постепенно вытеснившие древнейших позвоночных агнат. Вся их организация приспособлена к активному подвижному образу жизни в воде и питанию путём активного схватывания пищи кусающими челюстями. Дышат они жабрами, сидящими на наружной стороне жаберных дуг, подвижно расчленённых. Основным органом плавания являются, как правило, боковые движения хвостового отдела. Тело покрыто у большинства чешуёй, имеются настоящие зубы, парные конечности грудные и брюшные плавники, регулирующие движения, и непарные плавники стабилизаторы. Кроме хорошо развитых органов чувств обоняния, зрения и статоакустики, имеются, как и у круглоротых, еще и кожные органы чувств боковой линии. Круг кровообращения у большинства один, с несмешанной кровью. В сердце имеется только венозная кровь. Скелет хрящевой или костный. Череп состоит из черепной коробки не подвижно сочленённой с позвоночником и висцерального скелета в виде подвижно сочлененных с черепом скелетных дуг, поддерживающих челюстной и жаберный аппараты. Размножаются рыбы в воде, большинство откладывает икру, оплодотворение наружное.

  • 172. Развитие артериальной системы позвоночных
    Контрольная работа Биология

    Вероятно, у предков пресмыкающихся (как у лягушки) от сердца отходили два вентральных ствола один к легким, другой общий для пар системных дуг и сонных артерий. Однако у современных рептилий от сердца отходят уже не два, а три сосуда: 1) легочная артерия; 2) сосуд, продолжающийся только левой системной дугой и 3) сосуд правой системной дуги, от которого берут начало как обе сонные артерии, так и обе артерии передних конечностей. Эти три сосуда расположены таким образом, что на первый взгляд левая четвертая дуга должна получать из не полностью разделенного у большинства пресмыкающихся желудочка сердца преимущественно венозную кровь. Тем не менее недавние физиологические исследования показали, что на самом деле эта дуга может содержать как артериальную, так и венозную кровь. У птиц, происходящих от пресмыкающихся, близких к крокодилам, левая системная дуга исчезла, поэтому кроме легочной артерии, выходящей из правого желудочка, у них остается только один ствол, связанный с левым желудочком сердца. Он несет оксигенированную кровь к обеим сонным артериям (т.е. к голове), обеим передним конечностям и к органам тела, являясь единственной системной дугой правым элементом исходной пары.

  • 173. Развитие биологии в 18-XIX вв.
    Контрольная работа Биология

    В своей работе я обращаю внимание на несколько аспектов. Используя учебник по биологии под редакцией В.Н.Ярыгина, а также учебник «Концепции современного естествознания» С.Х.Карпенкова, опишу сущность биологии как науки, ее понимание в настоящее время, предмет и объект изучения биологии. Поскольку «…нет еще учебного пособия по истории развития самой биологии» (ЮсуфовА.Г.История и методология биологии, 2003, стр.4) раскрыть данную тему достаточно сложно. На мой взгляд изложение истории развития биологии упирается в необходимость ее периодизации, поэтому я приведу этапы развития биологии согласно учебнику под редакцией В.Н.Лавриненко, а так же С.Т.Мелюхина «Философские проблемы естествознания». Основу работы составят материалы учебного пособия для вузов «История и методология биологии» ЮсуфовА.Г., поскольку в нем наиболее подробно и полно представлена информация о развитии науки о жизни. Так как сложно переоценить значение эволюционного учения Ч.Дарвина в биологии и системе естественных наук в целом, я уделю этой теме особое внимание. Изложение материала основной части работы я разделю на ряд периодов, в рамках которых раскрою достижения в отдельных областях биологии, что позволит сформировать наиболее целостное представление о развитии биологии в XVIIIXIXвв.

  • 174. Развитие естествознания в 18-XIX вв. Космологические модели Вселенной. Происхождение человека
    Контрольная работа Биология

    Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В 1663 году, пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В 1674 году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, 16321723) с помощью микроскопа впервые увидел в капле воды «зверьков» движущиеся живые организмы. Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. Однако клеточная теория строения организмов сформировалась лишь к середине XIX века, после того как появились более мощные микроскопы и были разработаны методы фиксации и окраски клеток. Её основоположником был Рудольф Вирхов, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

  • 175. Развитие мозга. Психические свойства человека
    Контрольная работа Биология

    Специфические человеческие способности в свою очередь подразделяются на:

    1. общие, которыми определяются успехи человека в самых различных видах деятельности и общения (умственные способности, развитые память и речь, точность и тонкость движений рук и т.д.);
    2. специальные, определяющие успехи человека в отдельных видах деятельности и общения, где необходимы особого рода задатки и их развитие (способности математические, технические, литературно-лингвистические, художественно-творческие, спортивные и т.д.);
    3. теоретические, определяющие склонность человека к абстрактно-логическому мышлению;
    4. практические, лежащие в основе склонности к конкретно-практическим действиям. Сочетание этих способностей свойственно лишь разносторонне одаренным людям;
    5. учебные, которые влияют на успешность педагогического воздействия, усвоение человеком знаний, умений, навыков, формирования качеств личности;
    6. творческие, связанные с успешностью в создании произведений материальной и духовной культуры, новых идей, открытий, изобретений. Высшая степень творческих проявлений личности называется гениальностью, а высшая степень способностей личности в определенной деятельности (общении) талантом;
    7. способности к общению, взаимодействию с людьми;
    8. предметно-деятельностные способности, связанные со взаимодействием людей с природой, техникой, знаковой информацией, художественными образами.
  • 176. Развитие центральной нервной системы в эмбриогенезе
    Контрольная работа Биология

    Вся нервная система (центральная, периферическая и вегетативная) возникает из эктодермального эпителия медуллярной трубки, образующейся в дорсальной (спинной) стенке эмбрионального тела и идущей в качестве осевого органа от головного к хвостовому концу тела. Образование медуллярной (нервной) трубки начинается, как это уже описывалось на соответствующем месте, приблизительно на четвертой неделе развития в результате замыкания углубленной медуллярной пластинки сначала в срединной части эмбриона, а затем на головном и хвостовом концах. На обоих концах медуллярная трубка сначала открывается на поверхность тела передним и задним нейропором (neuroporus anterior et posterior). Замыкание медуллярной трубки происходит приблизительно таким же образом, как и у птиц и земноводных. Края медуллярной пластинки начинают приподниматься вместе с прилежащей областью поверхностной эктодермы над уровнем спинной стороны зародыша. Медуллярная пластинка утолщается и, благодаря приподниманию ее краев, образующихся в результате относительно более быстрого роста клеток медуллярной пластинки, в пластинке возникает борозда, выпуклость которой, обращена дорсально; эта борозда постепенно все более углубляется. Края медуллярной пластинки вместе с прилежащей тонкой эктодермой сближаются по средней линии и, наконец, срастаются; медуллярная пластинка таким образом замыкается в виде медуллярной трубки. Одновременно над ней срастаются и обособляются от нее края поверхностной кожной эктодермы, в связи с чем медуллярная трубка оказывается перекрытой поверхностной эктодермой. Еще перед закрытием пластинки из верхних краев медуллярной трубки по обеим сторонам вырастают две латеральные клеточные полосы, так называемые ганглиевые (узловые) полоски, которые несколько позже сегментируются и дают начало для закладки межпозвоночных (спинных) узлов. В этой фазе развития закладка медуллярной трубки, имеющая сначала один слой, состоит уже из нескольких слоев клеток. Ее каудальный конец доходит до так называемого хвостового бугорка, из которого ткань медуллярной трубки впоследствии вырастает также и в каудальном направлении. Задний нейропор в конце четвертой недели закрывается и вскоре полностью исчезает. Краниальный (головной) конец медуллярной трубки мешкообразно расширен и сначала открывается широкой щелью, называемой передним нейропором, обращенным дорсально. Передний нейропор также постепенно закрывается, приблизительно к концу четвертой недели. Мешкообразное расширение краниального конца медуллярной трубки представляет собой примитивную (первичную) закладку мозга. Очень скоро на этой расширенной части трубки, в результате расчленения мозговой закладки на три отдела, обозначаются три первичных мозговых пузыря (prosencephalon- передний, mesencephalon - средний и rhombencephalon - задний). Остаток медуллярной трубки представляет собой зачаток спинного мозга (medulla spinalis). При дифференциации из клеток медуллярной трубки в основном возникают два вида клеточных элементов - нервные элементы (невробласты) и опорные элементы (спонгиобласты), особенно в утолщающихся боковых отделах медулярной трубки, в то время как дорсальная и вентральная стенки остаются относительно тонкими. Оболочки центральной нервной системы формируются уже в течение второго месяца, а именно как путем (хотя бы отчасти) миграции эктодермальных клеток нервной закладки (pia mater et arachnoidea - мягкой и паутинной мозговых оболочек), так и. из мезенхимы, покрывающей закладки центральной нервной системы (dura mater - твердой мозговой оболочки). Стенка медуллярной трубки, как в области закладки головного мозга, так и в области будущего спинного мозга, представляет собой сначала компактное образование, состоящее из нескольких слоев клеток, еще недифференцированных и хорошо ограниченных. Впоследствии (в течение четвертой недели) наступает постепенная дифференциация и расчленение данных клеток, а также их обособление из плотной совокупности, причем между ними сохраняется связь в виде цитоплазматических мостиков неправильной формы, благодаря чему ткань приобретает губчатое строение (myelospongium).Дифференциация происходит в двух направлениях. Некоторые из клеток преобразуются в элементы, из которых дифференцируются нервные клетки (невробласты), иные превращаются в опорные клетки (спонгиобласты). Из спонгиобластов развиваются как эпендимные клетки, так и невроглийные клетки (астроциты, олигодендроглии и, по всей вероятности, микроглийные клетки). На шестой неделе боковые стенки медуллярной трубки становятся явно многослойными и более толстыми, чем вентральная и дорсальная стенки. На этих стенках (на их поперечных разрезах) видно, что клетки в них располагаются более или менее радиально, образуя три сравнительно легко различимых слоя. На внутренней и наружной поверхности стенка медуллярной трубки покрыта мембрановидным образованием (membrana limitans externa et interna). На внутренней пограничной мембране лежит слой сравнительно крупных клеток, имеющих ядро и отростки, идущие к наружной поверхности. Этот слой является закладкой эпендимного покрова, выстилающего канал спинного мозга и мозговые полости, в связи с чем он называется эпендимным слоем. Средний слой образуют вытянутые и радиально расположенные клетки с продольными радиальными отростками и хорощо различимыми ядрами. Этот слой называется покровным, оболочечным слоем. Наконец, поверхностный слой, находящийся под наружной пограничной мембраной, состоит не из клеточных элементов, а из отростков нервных клеток, располагающихся в оболочечном слое. Этот слой носит название краевого слоя. Из оболочечного слоя дифференцируется серое вещество центральной нервной системы, причем как его нервные элементы, так и опорные клетки (невроглия). В эпендимном слое наблюдается значительное количество митозов, что свидетельствует об интенсивной пролиферационной активности данного слоя. Из него посредством деления происходит также дополнение клеток оболочечного слоя. Невробласты оболочечного слоя медуллярной трубки в области будущего головного мозга и спинного мозга из первоначальных аполярных эктодермальных клеток преобразуются в биполярные клетки, причем у двигательных (моторных) элементов один из отростков активно вырастает из клетки и выходит из области будущей центральной нервной системы в виде закладки эфферентного аксона (неврита). Уже очень скоро в его цитоплазме при помощи импрегнирующих методов и специальных окрасок можно доказать наличие неврофибрилл, вещества Ниссла и митохондрий. Клеточное тело (нейроцит, пиренофор) большинства таких двигательных, эфферентных невронов приобретает мультиполярный характер со звездчатой формой, поскольку из него вырастают обычно несколько небольших отростков (дендритов). Афферентные невроны закладываются из невробластов, которые располагаются между клетками узловой пластинки. Из нее путем сегментации, соответствующей метамерическому распределению первых сегментов, образуются зачатки спинномозговых узлов, а в краниальной части (в заднем мозговом пузыре) из продолжения узловой пластинки закладываются также ядра мозговых нервов, которые, однако, не имеют правильной сегментации. Из невробластов узловой пластинки дифференцируются узловые клетки, которые сначала также имеют выраженно биполярный характер. Однако несколько позже, в результате вторичного сближения обоих отростков, а затем и объединения их зачатков в единый отросток, клетки приобретают ложный униполярный (псевдополярный) характер. У узловых клеток более краниальных узлов биполярность клеток сохраняется хотя бы отчасти. Затем афферентный отросток как составной компонент чувствительного пути направляется в задние корешки будущего спинного мозга, в то время как вторая часть отростка. разветвленного в виде буквы Т, идет на периферию и образует чувствительную часть спинномозгового (или мозгового) нерва, прилегая при этом к невритам эфферентных невронов(к двигательной части нерва) . В обоих случаях отростки невробластов вырастают активно из первоначально безотростковой (аполярной) клетки и вступают в тесный контакт с отростками соседних или последующих клеток нервного пути. Из длинных отростков, простирающихся от собственного тела клетки (невроцита) на большие расстояния, в результате соединения нескольких отростков возникают пучки нервных волокон, проходящие как в белом веществе центральной нервной системы (у более коротких путей), так и идущие с периферии в центральную нервную систему и, наоборот, из нее на периферию в виде так называемых периферических нервов. На своем протяжении в белом веществе и на периферии они покрыты особыми оболочками - миэлиновой, иногда и шванновской оболочкой, называемой также неврилеммой (у периферических волокон). Неврилемма, или шванновская оболочка, берет начало из особых шванновских клеток, которые дифференцируются из клеток узловой полоски, а отчасти, возможно, также и из клеток (спонгиобластов) медуллярной трубки; на поверхности волокна неврилемма образует тонкий клеточный плазматический слой. Миэлиновая оболочка окружает непосредственно аксоны (осевые цилиндры) нервных волокон. В соответствии с данными последних электронномикроскопических исследований, вещество миэлина распределяется в виде тонких концентрических дощечек, являющихся продуктом жизнедеятельности шванновских клеток. Миэлинизация не наступает одновременно во всех отделах нервной системы, она происходит постепенно, в различных областях в разное время. Некоторые нервные волокна покрываются миэлиновой оболочкой только после рождения плода. Спонгиобласты медуллярной трубки дают начало возникновению опорных элементов нервной системы, а также элементов, исполняющих трофическую и пластическую функцию, то есть невроглийных клеток, эпендимных и сателлитных клеток нервных узлов. Некоторые из этих спонгиобластов, которые сначала также не имеют отростков, способны мигрировать и, по всей вероятности, как между ними и глийными макрофагами, так между этими спонгиобластами и глийными макрофагами, а также между ними и фиксированными невроглийными клетками и даже невробластами существуют близкие дифференциальные взаимоотношения. Спонгиобласты сначала располагаются в закладке медуллярной трубки, только во внутреннем (эпендимном) слое. Вскоре из них на противоположных полюсах начинают вырастать отростки, один из которых короток и направляется в просвет медуллярной трубки (в будущий спинномозговой канал), а второй значительно удлиняется и распространяется радиально вплоть до краевого слоя под поверхность. Некоторые из этих клеток имеют эпителиевидную организацию и приобретают, в общем, цилиндрическую форму; эти клетки выстилают центральный канал спинного мозга и мозговые полости в виде эпендимной выстилки. Их первоначально длинный отросток при этом сокращается. Многие иные клетки, однако, обособляются от эпендимного слоя, их первоначально длинные отростки сокращаются, и клетки входят в состав оболочечного слоя, давая здесь начало возникновению различных видов невроглийных клеток (плазматические и фибриллярные астроциты, или макроглия, олигодендроглийные клетки и, по всей вероятности, так называемая микроглия, элементы которой обладают фагоцитарной активностью и способны совершать амебовидные движения). Из клеток невроглии в зависимости от обстоятельств могут возникать глийные макрофаги, фагоцитарные элементы, которые (в соответствии с данными наших исследований) могут развиваться также из астроцитов. Вопрос происхождения микроглий до сих пор еще не решен окончательно. Некоторые авторы считают, что микроглия является тканью мезенхимного происхождения (особенно в связи с ее фагоцитарной активностью); мы, на основании наших исследований, склонны считать, что этот вид глии берет начало из единой эктодермальной закладки. Спонгиобласты узловой полоски дифференцируются как на сателлитные клетки (амфициты) узловых (ганглиевых) клеток, так и на шванновские клетки, которые присоединяются к нервным волокнам, образуя их неврилемму, или шванновскую оболочку.

  • 177. Разнообразие строения цветков и плодов у семейства Розоцветные
    Контрольная работа Биология
  • 178. Редкие насекомые края
    Контрольная работа Биология

    В пищу насекомые используют практически любые органические вещества, как растительного, так и животного происхождения. Они могут питаться как твёрдыми веществами, так и жидкими субстратами. Поэтому исходный грызущий тип их ротового аппарата претерпел существенные изменения, направленные на формирование различных видов хоботков. Например, ротовой аппарат перепончатокрылых сохранил основные свойства грызущего типа. Эти насекомые имеют хорошо развитые жвалы, так необходимые им для ведения строительных работ. Вспомним изящно изготавливаемые соты домашней пчелы или бумажные гнёзда общественных ос. Одиночные перепончатокрылые при изготовлении гнёзд используют различные субстраты прогрызают норки в древесине, твёрдом и даже каменистом грунте. [ 10. 75-77].

  • 179. Репродуктивный комплекс поведения птиц
    Контрольная работа Биология

    Самцы целого ряда видов птиц включают в ритуал привлечения самок обнаруженное ими место для гнезда. В качестве примера можно привести наблюдения за характерным поведением мухоловки-пеструшки [Muscicapa hypoleuca]. Обнаружив в середине мая пустую дуплянку, самец обследовал ее и начал усиленно петь и часто лазить в леток. Это продолжалось около полутора суток, причем самец пытался петь и около другой дуплянки, занятой большими синицами (Parus major), которые его активно гоняли. Через двое суток появилась самка мухоловка-пеструшка, которая заинтересовалась и самцом и его дуплянкой. Самец долго гонял самку (агрессивное поведение) и не давал ей залетать в дуплянку. Через 45 час он перестал ее гонять (в чем немалое значение имели ее умиротворяющие ритуальные движения) и допустил влезть в дуплянку, но только следом за собой. Еще через 23 часа самка начала носить в дуплянку материал для гнезда. При этом еще сутки самец пускал самку с материалом в дуплянку только после того, как он предварительно влетал туда и вылетал обратно. Лишь через сутки самка самостоятельно смогла беспрепятственно влетать в дуплянку. Можно было думать, что у самца угасло агрессивное поведение, но появившуюся еще через сутки вторую самку, которая тоже хотела осмотреть дуплянку, самец долго гонял и прогнал со своего участка. Таким образом, у наблюдателя создалось законное впечатление, что самец примерно через сутки научился узнавать именно свою самку и отличать ее от других. Агрессивность же его при защите своей гнездовой территории не угасла до момента вылета птенцов: любая залетевшая сюда «чужая» птица того же вида немедленно подвергалась нападению. Аналогичные наблюдения достаточно хорошо описаны в ряде статей и книг. Опыты подтверждают, что в защите гнездового участка нет права сильного, а есть право первого; хозяин, территории всегда победитель. Это же отметил А.Н. Промптов, указывая, что у воробьиных птиц при столкновениях из-за гнездового участка «победа, как правило, оказывается не на стороне сильного, а на стороне «законного владельца»; «агрессор», даже более сильный дерется слабее хозяина, отстаивающего свои права.

  • 180. Рефлекторные реакции и дыхание
    Контрольная работа Биология

    Верхняя прямая мышца идет прямо в глазнице соосно (над и в плоскости) с оптической осью, также как и нижний мускул. В связи с тем, что он прикрепляется к глазному яблоку перед его экватором и выше, его главное действие это поднятие или поворот глаза вверх (вращение глазного яблока вверх). Но это его единственное действие только когда зрительная ось также выровняется с осью глазного яблока, то есть они будут отведены (перевернуты) на 23° от их основной позиции (термин употребляется, когда глаз смотрит непосредственно вперед). Как только глаз приведен (повернут) от 23° приведения, тогда все больше и больше действий ВПМ изменяются от простого поворота глаза кверху до комбинации приведения и наклонения (вращение вокруг зрительной оси). При приведении ВПМ помогает средней мышце (СМ) в последнем предварительном действии приведения. Если глаз отводится больше, чем на 23°, то действие ВПМ изменяется, чтобы все больше стать комбинацией отведения глаз (помогая боковой прямой мышце) и поворота наружу. Все эти действий ВПМ обычно соответственными уравновешивающими, но противоположными действиями нижнего прямого мускула. Когда глаз приведен, то эффективность вертикальных мышц (верхних или нижних) в поднимании или понижении глаза становиться либо пониженной, либо исчезает совсем. Это функция косых мышц, которые являются очень эффективными при приведении, верхний косой мускул для понижения, а нижний для поднимания. Отхождение ВК мускула находится на вершине глазного яблока вверху и посредине между отхождениями верхней прямой и средней прямой мышцами. Нижняя часть ВКМ проходит вперед и по середине почти что к входу глазницы. Здесь он становится округленным прочным сухожильем, уникальным среди всех КМ, чтобы резкого пройти сквозь хрящевое кольцо, которое действует как блок, проходя в обратном направлении, вниз и по бокам. Сухожилие заканчивается путем расширения для того, чтобы войти в верхнюю заднелатеральную четверть яблока, то есть, за его экватором и центром вращения. Верхний косой мускул, возвращаясь от блока, формирует угол 54°, при котором со средней стенкой глазницы и со зрительной осью в основном положении. Только тогда, когда глаз полностью приведен на (54°), зрительная ось выравнивается с ВК сухожилием, и ВКМ затем действует полностью как сильный депрессор (мышца, осуществляющая опускание). В момент поворота глаза ВКМ становится менее и менее депрессором до тех пор, пока при полном отведении оно не вызывает только отведение (помогая СМ) и наклон. ВКМ играет самую важную роль, когда мы смотрим вниз на близкий объект, при этом действии, верхние косые мышцы являются главными депрессорами, так как глаза (зрительные оси) сходятся, т.е. обе приведены.