Диссертация по предмету Физика

  • 1. Заряженная плазма, способы теоретического описания, перспективы исследований
    Диссертации Физика

    Вторая глава монографии посвящена исследованию свойств равновесия и устойчивости столба холодной заряженной плазмы в рамках магнитогидродинамической теории. В первом приближении, когда частные производные по времени равны нулю, равновесное состояние характеризуется наличием радиального поля. В общем случае, когда средняя аксиальная и средняя азимутальная скорости компонентов плазмы могут быть релятивистскими, при исследовании равновесия следует учитывать и соответствующие им собственные аксиальные и азимутальные магнитные поля. Также во второй главе монографии рассматриваются различные предельные случаи равновесных конфигурации. К таким типам равновесных конфигураций относятся, например, равновесия с нерелятивистским в среднем движением частиц и пренебрежимо малыми собственными магнитными полями, равновесия, в которых азимутальное движение частиц в среднем является релятивистским и при анализе учитывается наличие аксиального собственного магнитного опля и равновесия релятивистского электронного пучка с релятивистским аксиальным движением частиц при наличии собственного азимутального магнитного поля. В заключение главы 2 обсуждается гидродинамическая модель равновесного пинча Беннета с учетом конечной температуры пучка. Гидродинамическая устойчивой заряженной нерелятивистской плазмы рассматривается в последнем параграфе главы 2. в этих параграфах в рассмотрение включены устойчивые электростатические колебания, аналогичные тем, что существуют в столбе ненейтральной плазмы, электрон-электронная и электрон-ионная двухпучковые неустойчивости вращающихся потоков, возникающие вследствие различия в скоростях вращения различных компонент плазмы в равновесном радиальном электрическом поле, а также диокотронная неустойчивость полых заряженных электронных пучков, также рассматриваются релятивистские пучково-плазменные неустойчивости.

  • 2. Определение времени жизни носителей в высокоомном кремнии. Влияние времени жизни на параметры высоко...
    Диссертации Физика

    Так как время жизни жизни в высокомной базе определяет такую важную характеристику прибора как , как потери энергии во время выключения прибора, то в литературе уделяется большое внимание регулированию этого параметра. В качестве одного из методов применяется облучение протонами эмиттерной (анодной) стороны прибора [15]. Эта технология позволяет уменьшить потери при выключении прибора путем введения большого числа рекомбинационных центров и уменьшения времени жизни носителей в базовой области , примыкающей к аноду. В работе [16] в качестве примера рассматривался IEGT (Injection Enhanced Gate Transistor) c напряжением блокирования 4,5 кВ. Для облучения применялись протоны с дозами 51011 см-2 и 71011 см-2. Об энергиях протонов в статье не сообщается, но по глубине залегания радиационных дефектов можно сказать, что она не менее 2 МэВ. Падения напряжения в открытом состоянии составили не менее 4,7 и 5,4 В соответственно при плотности тока 100 А/см2. Потери энергии при выключении составили 35 mДж/см2 и 25 mДж/см2. Однако при повышении дозы облучения на ВАХ появлется участок с отрицательным динамическим сопротивлением, что приводит к осцилляциям тока и ухудшению характеристик прибора. В статье [16] указано на необходимость точного подбора дозы облучения.

  • 3. Разработка системы управления экспериментом на лабораторной установке фотоэлектрической станции в режиме удаленного доступа на основе web-технологий
    Диссертации Физика

    Программирование в системе Labwork максимально приближено к понятию алгоритм. После того, как вы продумаете алгоритм работы своей будущей программы, вам останется лишь нарисовать блок-схему этого алгоритма с использованием графического языка программирования "G". Не потребуется думать о ячейках памяти, адресах, портах ввода-вывода, прерываниях и иных атрибутах системного программирования. Данные будут передаваться от блока к блоку по "проводам", обрабатываться, отображаться, сохраняться в соответствии с вашим алгоритмом. Мало того, сам поток данных будет управлять ходом выполнения вашей программы. Ядро Labwork может автоматически использовать эффективные современные вычислительные возможности, такие как многозадачность, многопоточность и т.п. Процесс программирования в Labwork похож на сборку какой-либо модели из конструктора. Программист формирует пользовательский интерфейс программы - "мышкой" выбирает из наглядных палитр-меню нужные элементы (кнопки, регуляторы, графики и т.д.) и помещает их на рабочее поле программы. Аналогично "рисуется" алгоритм - из палитр-меню выбираются нужные подпрограммы, функции, конструкции программирования (циклы, условные конструкции и прочее). Затем также мышкой устанавливаются связи между элементами - создаются виртуальные провода, по которым данные будут следовать от источника к приемнику. Если при программировании случайно будет сделана ошибка, например какой-то провод, будет подключен "не туда", то в большинстве случаев Labwork сразу обратит на это внимание программиста. После того, как алгоритм - блок-схема нарисован, программа готова к работе. Помимо библиотек, входящих в состав комплекта поставки системы Labwork, существует множество дополнительно разработанных программ. Многие из них свободно доступны через Internet. Собственные разработки пользователей, накопленные в процессе работы, могут размещаться в новых библиотеках и могут быть многократно использованы в дальнейшем.