Физика

  • 3261. Эффект Холла
    Информация пополнение в коллекции 09.12.2008

    Простейшая теория Холла эффекта объясняет появление ЭДС Холла взаимодействием носителей тока (электронов проводимости и дырок) с магнитным полем. Под действием электрического поля носители заряда приобретают направленное движение (дрейф), средняя скорость которого (дрейфовая скорость) vдр0. Плотность тока в проводнике j = n*evдр, где n концентрация числа носителей, е их заряд. При наложении магнитного поля на носители действует Лоренца сила: F = e[Hvдp], под действием которой частицы отклоняются в направлении, перпендикулярном vдр и Н. В результате в обеих гранях проводника конечных размеров происходит накопление заряда и возникает электростатическое поле поле Холла. В свою очередь поле Холла действует на заряды и уравновешивает силу Лоренца. В условиях равновесия eEx = еНvдр, Ex =1/ne Hj, отсюда R = 1/ne (cмз/кулон). Знак R совпадает со знаком носителей тока. Для металлов, у которых концентрация носителей (электронов проводимости) близка к плотности атомов (n1022См-3), R~10-3(см3/кулон), у полупроводников концентрация носителей значительно меньше и R~105 (см3/кулон). Коэффициент Холла R может быть выражен через подвижность носителей заряда = е/m* и удельную электропроводность = j/E = еnvлр:

  • 3262. Эффект Холла и его применение
    Курсовой проект пополнение в коллекции 17.05.2012
  • 3263. Эффект Штарка для атома водорода
    Дипломная работа пополнение в коллекции 16.09.2011
  • 3264. Эффективные характеристики случайно неоднородных сред
    Информация пополнение в коллекции 09.12.2008

    При разработке методов иследования композиционных материалов весьма трудно и, по-видимому, не имеет смысла (в тех случаях, когда это можно практически реализовать) полностью учитывать структуру копмозита. В связи с этим возникла необходимость связать механику композитных материалов с механизмами элементов конструкций, развивающимися обычно в рамках континуальных процессах. Эта задача решается в процессе создания теории определения приведенных свойств композитных материалов различных структур (слоистые, волокнистые и др.), при описании их поведения в рамках континуальных представлений. Таким образом совершается переход от кусочно-однородной среды к однофазной.

  • 3265. Эффекты нелинейного преломления
    Контрольная работа пополнение в коллекции 19.05.2011

    Известно, что импульс характеризуется (во времени) не только длительностью и формой, но зависимостью частоты несущей от времени (чирпингом). Импульс на входе в линию промодулирован только по амплитуде, и частота его несущей не зависит от времени (чирпинга нет). Импульс без чирпинга, пройдя через волокно с положительной по знаку хроматической дисперсией, приобретает дополнительную частотную модуляцию (положительный чирпинг) и при этом уширяется. Уширяется импульс потому, что в волокне с дисперсией разные спектральные компоненты импульса движутся с разной скоростью. А положительный чирпинг импульс приобретает потому, что при положительной дисперсии длинноволновые компоненты запаздывают сильнее, чем коротковолновые, при этом происходит, так называемый, набег фазы. Если бы волокно обладало хроматической дисперсией с отрицательным знаком, то импульс бы всё равно уширился, но приобрёл бы при этом отрицательный чирпинг. Это приводит только к появлению зависящего от частоты фазового сдвига между амплитудами его спектральных составляющих. Сам же спектр при этом не меняется (рисунок 6). Поэтому про такой импульс говорят, что он уширен не по Фурье. Таким образом, в линейном приближении дисперсия приводит только к изменению ширины импульса, но не меняет ширину его спектра.

  • 3266. Явление диффузии
    Информация пополнение в коллекции 20.05.2012

    Первая количественная теория броуновского движения была дана А. Эйнштейном и М. Смолуховским в 1905-06 гг. на основе молекулярно-кинетической теории. Было показано, что случайные блуждания броуновских частиц связаны с их участием в тепловом движении наравне с молекулами той среды, в которой они взвешены. Частицы обладают в среднем такой же кинетической энергией, но из-за большей массы имеют меньшую скорость. Теория броуновского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причем импульсы различных молекул не одинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих ее молекул, не будут точно компенсироваться. Поэтому в результате «бомбардировки» молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 1014 раз в сек. Из этой теории следовало, что, измерив смещение частицы за определенное время и зная ее радиус и вязкость жидкости можно вычислить число Авогадро.

  • 3267. Явление молнии в природе
    Доклад пополнение в коллекции 09.12.2008

    Более детальные исследования молний стали возможны в конце 19 в. благодаря совершенствованию методов фотографии, особенно после изобретения аппарата с вращающимися линзами, что позволило фиксировать быстро развивающиеся процессы. Такой фотоаппарат широко использовался при изучении искровых разрядов. Было установлено, что существует несколько типов молний, причем наиболее распространены линейные, плоские (внутриоблачные) и шаровые (воздушные разряды). Линейные молнии представляют собой искровой разряд между облаком и земной поверхностью, следующий по каналу с направленными вниз ответвлениями. Плоские молнии возникают внутри грозового облака и выглядят как вспышки рассеянного света. Воздушные разряды шаровых молний, начинающиеся от грозового облака, часто направлены горизонтально и не достигают земной поверхности.

  • 3268. Явление политипизма и методы получения различных политипов в SiC
    Информация пополнение в коллекции 12.01.2009

    При температурах выше 1400° С и низких скоростях осаждения осадки ?-SiC, как правило, эпитаксиальные; ниже 1400° С в осадках встречаются беспорядочно ориентированные частицы ?-SiC. Эти результаты получаются при использовании как CH3SiCl3, так и смесей SiH4 + C3H8. Однако эпитаксиальные осадки, получаемые в различных условиях, сильно различаются по совершенству. На гранях (111) («кремниевых») получены гладкие эпитаксиальные осадки толщиной больше 30 мкм. Характерной особенностью морфологии эпитаксиальных осадков на этих гранях является наличие низких треугольных ступенчатых образований. Главными несовершенствами являются шестиконечные звездообразные холмики; они образуются только на гранях (111) («углеродных»). Эти холмики, по-видимому, обусловлены двойникованием. В случае пленок, осажденных на гранях (111), как правило, при низких температурах получается неровная или матовая поверхность, на которой холмики настолько многочисленны и малы, что не поддаются разрешению в оптическом микроскопе; с увеличением температуры осаждения индивидуальные холмики, образующие матовую поверхность, увеличиваются в размере, а число их уменьшается. При использовании графитовых подставок индивидуальные холмики роста обычно можно наблюдать только на осадках, получаемых при температурах ~ 1600° С и выше. При использовании подставок из вольфрама, дисилицида вольфрама и карбида вольфрама шероховатость поверхности пленок SiC, осаждаемых при 1700° С, такая же, как в случае пленок, выращенных на графитовых подставках при 1400° С (тонкая матовая текстура, в которой невозможно различить отдельные холмики вследствие их маленького размера и большой поверхностной плотности).

  • 3269. Явление резонанса и электрических цепей
    Контрольная работа пополнение в коллекции 20.01.2010

    Сравнивая частотные характеристики при питании параллельного резонансного контура от источника тока с характеристиками при питании его от источника ЭДС, можно сделать выводы аналогичные тем, которые были сделаны для последовательного контура:

    • частотные характеристики токов и напряжения контура принципиально отличаются друг от друга, т.к. при питании от источника тока сумма токов остается постоянной и происходит только их перераспределение между элементами, а при питании от источника ЭДС токи в каждом элементе формируются независимо;
    • режимы резонанса для обоих случаев полностью идентичны;
    • фазовые частотные характеристики для обоих случаев также идентичны.
  • 3270. Явление сверхпроводимости
    Информация пополнение в коллекции 30.11.2010

    Совокупность экспериментальных фактов о сверхпроводимости убедительно показывает, что при охлаждении ниже Тк проводник переходит в новое состояние, качественно отличающееся от нормального. Исследуя различные возможности объяснения свойств сверхпроводника, особенно эффекта Мейснера, немецкие учёные, работавшие в Англии, Г. и Ф. Лондоны (1934) пришли к заключению, что сверхпроводящее состояние является макроскопическим квантовым состоянием металла. На основе этого представления они создали феноменологическую теорию, объясняющую поведение сверхпроводников в слабом магнитном поле эффект Мейснера и отсутствие сопротивления. Обобщение теории Лондонов, сделанное Гинзбургом и Ландау (1950), позволило рассмотреть вопросы, относящиеся к поведению сверхпроводников в сильных магнитных полях. При этом было объяснено огромное количество экспериментальных данных и предсказаны новые важные явления. Убедительным подтверждением правильности исходных предпосылок упомянутых теорий явилось открытие эффекта квантования магнитного потока, заключённого внутри сверхпроводящего кольца. Из уравнений Лондонов следует, что магнитный поток в этом случае может принимать лишь значения, кратные кванту потока Фо = hc/e*, где е* заряд носителей сверхпроводящего тока, h Планка постоянная, с скорость света. В 1961 Р. Долл и М. Небауэр и, независимо, Б. Дивер и У. Фейроенк (США) обнаружили этот эффект. Оказалось, что е* = 2e, где е заряд электрона. Явление квантования магнитного потока имеет место и в случае упомянутого выше состояния сверхпроводника 2-го рода в магнитном поле, большем, чем Нк1. Образующиеся здесь нити нормальной фазы несут квант потока Фо. Найденная в опытах величина заряда частиц, создающих своим движением сверхпроводящий ток (е* = 2e), подтверждает Купера эффект, на основе которого в 1957 Дж. Бардин, Л. Купер и Дж. Шриффер (США) и Н. Н. Боголюбов (СССР) построили последовательную микроскопическую теорию сверхпроводимости согласно Куперу, два электрона с противоположными спинами при определённых условиях могут образовывать связанное состояние (куперовскую пару). Заряд такой пары равен 2e. Пары обладают нулевым значением спина и подчиняются Бозе-Эйнштейна статистике. Образуясь при переходе металла в сверхпроводящее состояние, пары испытывают бозе - конденсацию, поэтому система куперовских пар обладает свойством сверхтекучести. Т. о., С. представляет собой сверхтекучесть электронной жидкости. При Т = 0 связаны в пары все электроны проводимости. Энергия связи электронов в паре весьма мала: она равна примерно 3,5 kTk, где k Больцмана постоянная. При разрыве пары, происходящем, например, при поглощении кванта электромагнитного поля или кванта звука (фонона), в системе возникают возбуждения. При отличной от нуля температуре имеется определённая равновесная концентрация возбуждений, она возрастает с температурой, а концентрация пар соответственно уменьшается. Энергия связи пары определяет т. н. щель в энергетическом спектре возбуждений, т. е. минимальную энергию, необходимую для создания отдельного возбуждения. Природа сил притяжения между электронами, приводящих к образованию пар, вообще говоря, может быть различной, хотя у всех известных сверхпроводников эти силы определяются взаимодействием электронов с фононами. Тем не менее, развитие теории сверхпроводимости стимулировало интенсивные теоретические поиски других механизмов сверхпроводимости. В этом плане особое внимание уделяется нитевидным (одномерным) и слоистым (двумерным) структурам, обладающим достаточно большой проводимостью, в которых имеются основания ожидать более интенсивного притяжения между электронами, чем в обычных сверхпроводниках, а следовательно, и более высокой температуры перехода в сверхпроводящее состояние. Явления, родственные сверхпроводимости, по-видимому, могут иметь место и в некоторых космических объектах, например в нейтронных звёздах.

  • 3271. Явление электрогенеза
    Информация пополнение в коллекции 19.04.2012

    Первый период - локальный ответ представляет собой активную местную деполяризацию, возникающую вследствие увеличения натриевой проницаемости клеточной мембраны. Однако при подпороговом стимуле начальное повышение натриевой проницаемости недостаточно велико, чтобы вызвать быструю деполяризацию мембраны. Локальный ответ возникает не только при подпороговом, но и при надпороговом раздражении и является составным компонентом потенциала действия. Таким образом, локальный ответ является первоначальной и универсальной формой реагирования ткани на различные по силе раздражения. Биологический смысл локального ответа состоит в том, что если раздражение мало, то ткань реагирует на него с минимальной тратой энергии, не включая механизмы специфической деятельности. В том же случае, когда раздражение надпороговое, локальный ответ переходит в потенциал действия. Период от начала раздражения до начала фазы деполяризации, когда локальный ответ, нарастая, снижает мембранный потенциал до критического уровня, называется латентным периодом или скрытым периодом. Продолжительность латентного периода зависит от характера раздражения (Рис. 6).

  • 3272. Явление электромагнитной индукции
    Методическое пособие пополнение в коллекции 10.10.2011

    Рассмотрим прямой проводник, движущийся с постоянной скоростью v в однородном магнитном поле индукцией B (рис. 4.10.4). Положительные и отрицательные свободные заряды движутся вместе с проводником со скоростью v относительно магнитного поля. На эти заряды действует сила Лоренца FЛ, направленная вдоль проводника. Под действием силы Лоренца свободные заряды смещаются и накапливаются на концах проводника. Таким образом, на концах проводника возникает разность потенциалов, а внутри проводника создается электрическое поле напряженности E. Это поле действует на заряды электрическими силами Fэл. Накопление зарядов на концах проводника приводит к увеличению напряженности электрического поля, и тем самым увеличению силы Fэл. При определенной разности потенциалов на концах проводника электрическая сила становится равной силе Лоренца: , и перераспределение зарядов прекращается. Таким образом, сила Лоренца, двигающая заряды вопреки действию электрических сил, имеет неэлектрическую природу, т.е. является сторонней силой, которая приводит к возникновению ЭДС на концах проводника.

  • 3273. Явления переноса в жидкостях
    Реферат пополнение в коллекции 15.07.2010
  • 3274. Ядерна енергетика
    Информация пополнение в коллекции 07.12.2010

    Висновок: Отже, атомна енергетика приносить як багато користі так і багато шкоди людям та навколишньому середовищу. Проте ви подивіться на ті колосальні числа і відсотки хіба це мало? Але згадайте аlже ще з молодших класів нас навчали, що здоровя за гроші не придбаєш. А кожен рік зявляється все більше і більше шкідливих відходів які потрібно утилізовувати, навіть при повній утилізації на людей які проживають біля таких ядерних «могил» діє підступна радіація, хоч і в допустимих кількостях, але це все одно шкідливо для людського організму, не кажучи вже про можливість 2 Чорнобилю . Адже всю енергію яка видобувається в Україні можна з легкість перевести в грошові одиниці : нехай 1 Квт коштує 20 коп. тоді 18 мільярдів Квт це приблизно 3,6 мільярда грн. Тобто кожен рік в Україні виробляють та продають енергії на майже 44 мільярдів грн., якщо б ці гроші йшли на утилізування відходів, оновлення обладнання на атомних станціях та ін.. то це досить швидко підняло ядерну економіку нашої держави, проте майже не виділяються фінанси на утилізування ядерних відходів, на оновлення ядерних електростанцій не виділяються ті кошти які мали б виділятися.

  • 3275. Ядерная физика
    Информация пополнение в коллекции 12.01.2009

    Исследуя атомное ядро, ядерная физика использует различные теоретические модели, которые могут показаться противоречащими друг другу. Немецкий физик М. Борн предложил в 1936 г. гидродинамическую модель атомного ядра, согласно которой ядро уподобляется капле заряженной плотной жидкости, состоящей из интенсивно взаимодействующих между собой нуклонов (нейтронов и протонов). Как и в капле обычной жидкости, поверхность капли-ядра может колебаться, что при некоторых условиях приводит к развалу ядра. Американский физик М. Гепперт-Майер и одновременно немецкий физик И. Йенсен разработали в 1950 г. оболочечную модель атомного ядра, в которой нуклоны ядра движутся независимо друг от друга в некоем усредненном поле ядерной силы. Подобно электронам в атоме, нуклоны заполняют различные оболочки, каждая из который характеризуется определённым значением энергии. Стремясь примирить взаимно исключающие исходные положения гидродинамической и оболочечной моделей, датские физики О. Бор и Б. Моттельсон, а также американский физик Дж. Рейнуотер разработали в начале 1950-х гг. так называемую обобщенную модель атомного ядра. Согласно этой модели, ядро состоит из сердцевины устойчивой внутренней части (нуклоны целиком заполненных оболочек) и «внешних» нуклонов, движущихся в поле, создаваемом нуклонами сердцевины. Под влиянием внешних нуклонов сердцевина ядра может деформироваться, принимая форму вытянутого или, напротив, сплюснутого эллипсоида; может испытывать колебания.

  • 3276. Ядерная энергетика
    Информация пополнение в коллекции 12.01.2009

    Поиск урана, и, главное, определение его запасов как очень ценного и важного стратегического сырья проводится во многих странах мира. В капиталистических странах первые три места по запасам и содержанию урана в рудах занимают Канада, ЮАР и США. По добыче первое место занимают США, второе Канада, третье ЮАР. В природе есть один-единственный изотоп урана, который может поддерживать цепную реакцию деления ядра урана это уран-235. В одном акте деления ядра урана выделяется энергия на один атом в 200 млн. раз большая, чем при любой химической реакции. Если бы все изотопы в 1 г урана подверглись делению, то выделилась бы энергия в 20 млн. ккал, что соответствует 23 тыс. кВт-ч тепловой энергии. Однако в природном Уране очень трудно получить самоподдерживающуюся цепную реакцию деления, так как делящийся изотоп уран-235 в нем содержится в незначительном количествевсего 0, 71%, а остальные 99, 29% составляет неделящийся изотоп уран-238. Поэтому создаются специальные устройства ядерные котлы, реакторы, в которых при определенных контролируемых условиях происходит самоподдерживающаяся цепная реакция деления ядер тяжелых элементов. Такие реакторы, имеющие в своем составе ядерное топливо (горючее), специальные виды замедлителя нейтронов, отражатель и охладитель, позволяют из неделящихся изотопов урана-238 или тория-232 получать делящиеся изотопы урана-233 и новый вид ядерного топлива плутоний-239, которые затем могут быть использованы в качестве ядерного горючего.

  • 3277. Ядерная энергетика
    Информация пополнение в коллекции 07.11.2011

    Возможно, те жители Островецкого района, которые выступают категорически против строительства АЭС, не до конца понимают, какой мощнейший толчок развитию региона даст строительство АЭС. В период строительства АЭС появляется много рабочих мест, а атомная станция - это долгая стройка. Планируется завершить возведение первого блока в 2016 году. Стройка на этом не закончится, ведь надо будет возводить и второй блок. А дальше начнется эксплуатация станции. Расчетные сроки ее использования - 40-60 лет. На протяжении всего этого времени люди будут обеспечены работой, причем весьма высокооплачиваемой - атомщики всегда получают хорошо. Транспортное, бытовое и медицинское обслуживание - все это также концентрируется вокруг АЭС. Жителей Франции нисколько не смущает мощная атомная энергетика. Наоборот, они считают ее фактором, который позволяет Франции иметь настоящую независимость.»

  • 3278. Ядерная энергетика и особые подходы к работоспособности конструкционных материалов
    Информация пополнение в коллекции 11.05.2011

    При конструировании и изготовлении корпусов ВВЭР ставится задача обеспечения многолетней - (до 30 лет) надежной эксплуатации реактора при различных режимах. Корпус реактора работает в очень жестких условиях: высокие давление и температура теплоносителя, мощные потоки радиоактивного излучения, значительные скорости теплоносителя, который даже при высокой степени чистоты является коррозионно-агрессивной средой. В процессе эксплуатации металл корпуса подвергается периодическим нагрузкам, связанным с колебанием давления и температуры при установившихся и переходных режимах и с понижением давления до атмосферного и температуры до 60°С при плановых и аварийных остановках. Потоки ядерного излучения, циклические нагрузки и длительное воздействие высокой температуры вызывают постепенное изменение свойств материала. Профилактический осмотры ремонт элементов корпуса ограничены, вследствие их больше наведенной радиоактивности. Для работы в таких условиях предпочтительными материалами являются перлитные низколегированные стали типа 15Х2МФА и 22К. Помимо высоких механических и пластических свойств вышеперечисленные стали технологична при сварке и изготовлении поковок массой до 200000 кг и толщиной до 600 мм. Внутренняя поверхность корпуса обычно покрывается антикоррозионной наплавкой, что значительно уменьшает выход продуктов коррозии в воду реактора. Изготовление корпусов ВВЭР, работающих при высоких давлениях (до 16 МПа) и температуре (до 340 °С) теплоносителя, целиком из нержавеющих сталей невозможно вследствие не технологичности и низкой прочности их.

  • 3279. Ядерная энергия и ядерные энергетические установки
    Информация пополнение в коллекции 12.01.2009

    Для характеристики цепной реакции деления используется величина, называемая коэффициентом размножения К. Это отношение числа нейтронов определенного поколения к числу нейтронов предыдущего поколения. Для стационарной цепной реакции деления К=1. Размножающаяся система (реактор), в которой К=1, называется критической. Если К>1, число нейтронов в системе увеличивается, и она в этом случае называется надкритической. При К< 1 происходит уменьшение числа нейтронов и система называется подкритической. В стационарном состоянии реактора число вновь образующихся нейтронов равно числу нейтронов, покидающих реактор (нейтроны утечки) и поглощающихся в его пределах. В критическом реакторе присутствуют нейтроны всех энергий. Они образуют так называемый энергетический спектр нейтронов, который характеризует число нейтронов различных энергий в единице объема в любой точке реактора. Средняя энергия спектра нейтронов определяется долей замедлителя, делящихся ядер (ядра горючего) и других материалов, которые входят в состав активной зоны реактора. Если большая часть делений происходит при поглощении тепловых нейтронов, то такой реактор называется реактором на тепловых нейтронах. Энергия нейтронов в такой системе не превышает 0.2 эВ. Если большая часть делений в реакторе происходит при поглощении быстрых нейтронов, такой реактор называется реактором на быстрых нейтронах.

  • 3280. Ядерное топливо. Ядерные реакции
    Информация пополнение в коллекции 30.01.2012

    Природный уран состоит из трёх изотопов: 238U <http://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%BD-238> (99,282 %), 235U (0,712 %) и 234U <http://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%BD-234> (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель <http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BC%D0%B5%D0%B4%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BD%D0%B5%D0%B9%D1%82%D1%80%D0%BE%D0%BD%D0%BE%D0%B2> интенсивно поглощают нейтроны <http://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D0%B9%D1%82%D1%80%D0%BE%D0%BD>. В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических <http://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D0%B5%D1%80%D0%BD%D1%8B%D0%B9_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D0%B5%D0%B0%D0%BA%D1%82%D0%BE%D1%80> реакторах на тепловых нейтронах <http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BA%D1%82%D0%BE%D1%80_%D0%BD%D0%B0_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%B2%D1%8B%D1%85_%D0%BD%D0%B5%D0%B9%D1%82%D1%80%D0%BE%D0%BD%D0%B0%D1%85> используют уран с обогащением менее 6 %, а в реакторах на быстрых <http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BA%D1%82%D0%BE%D1%80_%D0%BD%D0%B0_%D0%B1%D1%8B%D1%81%D1%82%D1%80%D1%8B%D1%85_%D0%BD%D0%B5%D0%B9%D1%82%D1%80%D0%BE%D0%BD%D0%B0%D1%85> и промежуточных <http://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%B0%D0%BA%D1%82%D0%BE%D1%80_%D0%BD%D0%B0_%D0%BF%D1%80%D0%BE%D0%BC%D0%B5%D0%B6%D1%83%D1%82%D0%BE%D1%87%D0%BD%D1%8B%D1%85_%D0%BD%D0%B5%D0%B9%D1%82%D1%80%D0%BE%D0%BD%D0%B0%D1%85> нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.