На правах рукописи
Будовских Евгений Александрович
Закономерности формирования поверхностных слоев металлов и сплавов при электровзрывном легировании
Специальность
01.04.07 - УФизика конденсированного состоянияФ
Автореферат диссертации на соискание ученой степени доктора
технических наук
Новокузнецк - 2008
Работа выполнена в ГОУ ВПО УСибирский государственный индустриальный университетФ и УТомский государственный архитектурно-строительный университетФ
Научный консультант: д-р физ.-мат. наук, проф.
Громов Виктор Евгеньевич,
ГОУ ВПО УСибирский государственный индустриальный университетФ
Официальные оппоненты: д-р физ.-мат. наук, проф.
Глезер Александр Маркович;
д-р техн. наук, ст. науч. сотр.
Полторацкий Леонид Михайлович;
д-р физ.-мат. наук
Шаркеев Юрий Петрович
Ведущая организация - Институт машиноведения РАН
(г. Москва)
Защита состоится 6 июня 2008 года в 1200 на заседании диссертационного совета Д 212.252.04 в Сибирском государственном индустриальном университете по адресу: 654007, г. Новокузнецк Кемеровской области, ул. Кирова, д. 42
С диссертацией можно ознакомится в библиотеке Сибирского государственного индустриального университета
Автореферат разослан дата
Ученый секретарь
диссертационного совета Куценко А.И.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность проблемы. Усиление эксплуатационных требований к материалам постоянно стимулирует разработки в области поверхностного легирования. Традиционные способы химико-термической обработки - это энергоемкие и длительные процессы, поэтому в последние годы находят применение новые способы упрочнения металлов и сплавов, основанные на использовании концентрированных потоков энергии.
В ряде работ экспериментально показано, что эффективным инструментом для этой цели могут служить многофазные плазменные струи продуктов электрического взрыва проводников. Электровзрывное легирование (ЭВЛ) с оплавлением поверхности позволяет сократить время обработки, давая возможность встраивать соответствующее оборудование в единую технологическую цель изготовления деталей. Оно характеризуется малой операционностью, совмещая локальное тепловое воздействие на поверхность и ее насыщение легирующими добавками, которые задаются выбором из широкого круга материалов взрываемых проводников.
Применение разрядно-импульсных технологий упрочнения в настоящее время сдерживается малой изученностью характерных для них взаимосвязанных процессов вблизи облучаемой поверхности, в оплавляемой зоне легирования и в зоне термического влияния. Это в полной мере относится и к ЭВЛ, что ограничивает возможности управления обработкой и оптимизации формируемых свойств. В литературе отсутствуют систематизированные сведения о тепловых, силовых и гидродинамических процессах при ЭВЛ, влиянии структуры импульсных плазменных струй на результаты обработки, металлофизических аспектах этого способа поверхностного легирования. Мало экспериментальных данных имеется по его практическому использованию. Это отражается на отставании в разработке специализированного оборудования с высоких уровнем механизации и автоматизации процесса.
Исследования проводились на кафедрах физики СибГИУ и ТГАСУ в соответствии с научно-техническими программами УАвиационная технологияФ, УОблучение - РВОФ и грантам по фундаментальным проблемам металлургии Министерства общего и профессионального образования РФ, гранту ИСЭ СО РАН, единым заказ-нарядам СибГИУ и ТГАСУ.
Цель и задачи исследования. Целью настоящей работы явилась разработка материаловедческих и физико-технических основ одно- и двухкомпонентного ЭВЛ металлов и сплавов, обосновывающих возможность упрочнения поверхности в несколько раз.
Для достижения цели были поставлены и решены следующие задачи:
а) исследовать особенности формирования и взаимодействия с поверхностью импульсных плазменных струй продуктов электрического взрыва проводников, определить возможности управления процессом обработки;
б) исследовать тепловые, силовые, гидродинамические и физико-химические процессы при ЭВЛ и выявить закономерности формирования строения, фазового состава и структуры модифицированных слоев;
в) определить области практического использования ЭВЛ и служебные свойства поверхностных слоев после различных видов легирования.
Научная новизна. Определены возможности управления процессом электровзрывной обработки путем выбора энерговклада во взрываемый проводник, его материала, размеров и формы, геометрических параметров плазменного ускорителя и расстояния от среза его сопла до облучаемой поверхности. Показана возможность использования для расчета глубины зоны легирования на оси струи теплофизической модели, согласно которой пороговый режим, приводящий к оплавлению, определяется интенсивностью теплового воздействия, временем импульса и свойствами материала. Радиус зоны легирования при различных режимах обработки рассчитан с использованием этой же модели с учетом нормального распределения теплового потока и давления плазменной струи на поверхность и известных зависимостей скорости плазмы от энергии емкостного накопителя установки.
Показано, что строение науглероженных слоев в общем случае включает в себя графитовое покрытие, имеющее с основой металлургическую связь, зону легирования, тонкий подслой (граничную полоску) с низкой степенью легирования на границе с основой и зону термического влияния. Происхождение граничной полоски связано с продолжающимся распространением фронта плавления в глубь металла после окончания импульса. Обнаружена неустойчивость границы оплавления, возникающая под действием радиального течения расплава при высокоинтенсивных режимах обработки. Строение зоны плазменного воздействия при электровзрывной металлизации отличается отсутствием покрытия.
Показано, что по глубине зоны легирования в общем случае можно выделить 4 характерных слоя. Основным по объему является слой с ячеистой или зеренной структурой. На поверхности формируется тонкий нанокомпозитный слой, а на границе с основой - нанокристаллический подслой с низкой степенью легирования. В случае двухкомпонентного легирования с использованием порошковой навески бора основным является промежуточный слой с ячеистой кристаллизацией. Обнаружена взаимосвязь между рельефом поверхности зоны легирования, морфологическими особенностями ее кристаллизации и состояния границы с основой.
Высокая скорость охлаждения приводит к образованию пересыщенных твердых растворов, легированных слоев, упрочненных карбидами или интерметаллидами, композиционных структур, включающих нерастворившиеся частицы, внесенные в расплав из струи. Кристаллизация в условиях выделенного направления теплоотвода металла приводит к текстуре образующихся фаз. Фазовый наклеп в зоне термического влияния железа при прямом и обратном полиморфных превращениях не приводит к измельчению зерен, так как в силу кратковременности обработки процесс рекристаллизации не успевает завершиться. Под действием температурных напряжений в зоне термического влияния возможно образование трещин, как это обнаружено при обработке меди.
егирование осуществляется как плазменным компонентом струи, так и конденсированными частицами. Степень легирования плазменным компонентом возрастает с увеличением термосилового воздействия и достигает нескольких процентов. Основной вклад в нее, достигающий нескольких десятков процентов, вносят конденсированные частицы продуктов взрыва. Степень легирования конденсированными частицами продуктов взрыва зависит от их смачиваемости расплавов.
Определены механизмы легирования. Взаимодействие плазмы с расплавом приводит к возмущениям температуры и концентрации легирующей добавки на поверхности и возникновению упорядоченных конвективных течений, обусловливающих легирование на всю глубину вплоть до границы оплавления. Давление струи вызывает вытеснение расплава от центра к периферии зоны легирования, а при высокоинтенсивных режимах обработки происходит выплеск. При этом развивается сдвиговая неустойчивость течения, которая, как и термоконцентрационно-капиллярная конвекция, приводит к интенсивному перемешиванию расплава. Выравнивание легирующей добавки и фазового состава по глубине могут быть обусловлены также вскипанием верхних слоев расплава после окончания импульса вследствие их перегрева под давлением струи выше температуры кипения при остаточном давлении в технологической камере. С использованием развитых модельных представлений рассчитано увеличение температуропроводности расплава при перемешивании и понижение его уровня при вытеснении к периферии.
Практическая значимость работы. Результаты работы позволили определить возможности управления и оптимизации ЭВЛ. Показано, что использование порошковых навесок, размещаемых в области электровзрыва проводника и переносимых формируемой струей на облучаемую поверхность, при высокоинтенсивных режимах обработки подавляет радиальное течение расплава и позволяет проводить обработку без выплеска. Установлено, что микротвердость, износостойкость и стойкость против высокотемпературного окисления модифицированных при одно- и двухкомпонентном легировании поверхностных слоев увеличивается в несколько раз. Разработан способ электровзрывного упрочнения внутренних поверхностей деталей. Результаты проведенных исследований и оценка предполагаемой экономической эффективности ЭВЛ позволяют рекомендовать его для практического использования.
Достоверность полученных результатов обусловлена большим объемом экспериментального материала, полученного с использованием современных средств металлографического анализа, сравнением результатов между собой и с результатами других авторов, использованием для их анализа хорошо апробированных теоретических представлений.
Основные положения, выносимые на защиту:
а) кинетика электровзрыва тонких фольг и результаты анализа совокупности одновременно протекающих при обработке взаимосвязанных тепловых, силовых, гидродинамических и других процессов, обосновывающие возможности управления структурой и строением плазменной струи как инструмента воздействия на поверхность и позволяющие оптимизировать режимы обработки, структуру и свойства модифицированных слоев;
б) факторы, определяющие экспериментально установленные закономерности формирования рельефа поверхности, структуры и фазового состава модифицированных слоев при обработке модельных металлов и промышленных сталей и сплавов;
в) повышенный комплекс свойств металлов и сплавов после различных видов ЭВЛ, обусловленный закономерным формированием по глубине градиентных слоев с мелкодисперсным характером структуры и высокой степенью легирования.
Апробация результатов исследования. Результаты диссертации представлялись на V Всесоюз. совещ. УПлазменные процессы в металлургии и технологии неорганических материаловФ, Дмитров, 1988; Всесоюз. семинаре УПластическая деформация металлов в условиях внешних энергетических воздействийФ, Новокузнецк, 1991; XII Всесоюз. конф. УТеория и практика газотермического нанесения покрытийФ, Дмитров, 1992; науч.-техн. конф. УНовые материалы и технологииФ, Москва, 1994; Респ. науч.-техн. конф. УВысокоэффективное оборудование и технологические процессы упрочнения режущих инструментов и деталей машинФ, Могилев, 1990; Всесоюз. науч.-техн. конф. УНовые материалы и ресурсосберегающие технологии термической и химико-термической обработки в машиностроении и металлургииФ, Новокузнецк, 1991; II, IV, V, VI, VIII Межгос. семинаре УСтруктурные основы модификации материалов методами нетрадиционных технологийФ, Обнинск, 1993, 1997, 1999, 2001, 2005; III и IV Междунар. конф. УПрочность и пластичность материалов в условиях внешних энергетических воздействийФ, Николаев, 1993, Новокузнецк, 1995; IV Всерос. конф. УМодификация свойств конструкционных материалов пучками заряженных частицФ, Томск, 1996; V Межгос. науч.-практ. конф. УАктуальные проблемы материаловедения в металлургииФ, Новокузнецк, 1997; Междунар. науч.-практ. конф. УСовременные проблемы и пути развития металлургииФ, Новокузнецк, 1997; Междунар. науч.-техн. конф. (науч. чтениях, посвящ. П.О. Сухому) УСовременные проблемы машиноведенияФ, Гомель, 1998; III Междунар. конф. ICEE, Клязьма, 1998; II Урал. Регион. школе-семинаре молодых ученых и студентов по физике конденсированного состояния, Екатеринбруг, 1998; III Internat. Symp. SIBCONVERSТ99, Томск, 1999; Kurdyumov Memorial Conference On Martensite (CUMICOM99), Москва, 1999; Науч.-техн. конф. УМатериалы и изделия из них под воздействием различных видов энергииФ, Москва, 1999; Бернштейновских чтениях по термомеханической обработке металлических материалов, Москва, 1999, 2006; Междунар. науч.-техн. конф. УАктуальные проблемы материаловеденияФ, Новокузнецк, 1999; УЭволюция дефектных структур в конденсированных средахФ, Барнаул, 2000; Всерос. науч.-практ. конф. УМеталлургия на пороге XXI века: Достижения и прогнозыФ, Новокузнецк, 2000; International Congress on Аdvanced Materials, their Processes and Application, 2000; III Междунар. конф. УФизика и промышленность - 2001Ф, Голицыно, 2001; XI Всерос. студ. науч. конф. УПроблемы теоретической и экспериментальной химииФ, Екатеринбург, 2001; 15-й Междунар. конф. УВзаимодействие ионов с поверхностью: ВИП-2001Ф, Москва, 2001; ХIII Петербург. чтениях по проблемам прочности, Санкт-Петербург, 2002; Всерос. конф. УДефекты структуры и прочность кристалловФ, Черноголовка, 2002; II Рос.-кит. семинаре УФундаментальные проблемы современного материаловеденияФ, Барнаул, 2002; Междунар. конф. УScience for Materials in the Frontier of Centuries: Advantages and ChallengesФ, Киев, 2002; Всерос. науч. конф. студентов, аспирантов и молодых ученых УНаука и молодежь: проблемы, поиски, решенияФ, Новокузнецк, 2003; VII Междунар. школе-семинаре, посвящ. году науки и культуры Казахстана в России, Усть-Каменогорск - Барнаул, 2003; Междунар. конф. УДействие электромагнитных полей и тока на пластичность и прочность материаловФ, Москва, 2003; XXV Междунар. конф. УФизика прочности и пластичностиФ, Тольятти, 2003; XVII Уральской школе металловедов-термистов, Киров - Екатеринбург, 2004, 13th Internat. Conf. on Metallurgy and Materials УMetal 2004Ф, Ostrava, Czech Republic, 2004; XLII и XLIII Междунар. конф. УАктуальные проблемы прочностиФ, Калуга и Витебск, 2004; Объед. практ. семинаре УМатериаловедение и перспективные материалы. Действие электрических, магнитных полей и электрического тока на объекты и материалыФ, Москва, 2004; XV, XVI, XVII Петербургских чтениях по проблемам прочности, Санкт-Петербург, 2005, 2006, 2007; XIII, XV Респ. конф. асп., магистрантов и студентов УФизика конденсированного состоянияФ, Гродно, 2005, 2007; Всерос. науч. конф. студентов, асп. и молодых ученых УНаука и молодежь: проблемы, поиски, решенияФ, Новокузнецк, 2005; XLIV Междунар. конф. УАктуальные проблемы прочностиФ, Вологда, 2005; VIII Междунар. школе-семинаре УЭволюция дефектных структур в конденсированных средахФ, Барнаул, 2005; Всерос. науч.-практ. конф. УМеталлургия: новые технологии, управление, инновации и качествоФ, Новокузнецк, 2005; Междунар. конф. УАктуальные проблемы физики твердого телаФ, Минск, 2005; III Рос. науч.-техн. конф. УФизические свойства металлов и сплавовФ, Екатеринбург, 2005; VI Междунар. междисциплинар. симпоз. УФракталы и прикладная синергетикаФ, Москва, 2005; II Междунар. школе УФизическое металловедениеФ и XVIII Уральской школе металловедов-термистов, Тольятти, 2006; 3-й Всерос. конф. молодых ученых в рамках Рос. науч. форума с междунар. участием УДемидовские чтенияФ УФундаментальные проблемы в 3-м тысячелетииФ, Томск, 2006; III Евразийской науч.-практ. конф. УПрочность неоднородных структурФ, Москва, 2006; Всерос. науч.-практ. конф. УМеталлургия: новые технологии, управление, инновации и качествоФ, Новокузнецк, 2005; XVI Междунар. конф. УФизика прочности и пластичности материаловФ, Самара, 2006; 4-й Междунар. конф. УФазовые превращения и прочность кристалловФ, посвящ. памяти акад. Г.В. Курдюмова, Черноголовка, 2006; 2nd International Congress on Radiation Physics and Chemistry of Inorganic Materials, High Current Electronics, and Modification of Materials with Particle Beams and Plasma Flows, Tomsk, 2006; VIII Междунар. школе-семинаре УЭволюция дефектных структур в конденсированных средахФ, Барнаул, 2006; 45-й Междунар. конф. УАктуальные проблемы прочностиФ, Белгород, 2006; Неделе металлов в Москве, 2006; VII Междунар. конф. УДействие электромагнитных полей на пластичность и прочность материаловФ, Воронеж, 2007; IV Междунар. школе-конф. УМикромеханизмы пластичности, разрушения и сопутствующих явлений (MPFP)Ф, Тамбов, 2007; China-Russia Symposium УElectroplastic effect in metalsФ, Shenzhen, China, 2007; XI Междунар. конф. УВзаимодействие дефектов и неупругие явления в твердых телахФ (IIAPS XI), Тула, 2007; European Congress on Advanced Materials and Processes, Nuremberg, Germany, 2007; IV Рос. науч.-техн. конф. УФизические свойства металлов и сплавовФ, Екатеринбург, 2007.
Публикации. Всего по теме диссертации опубликовано 2 коллективные монографии, отдельные главы в 4 коллективных монографиях, 43 статьи, 33 из которых в журналах из перечня ВАК, 2 авторских свидетельства на изобретения и тезисы 89 докладов на конференциях, семинарах, симпозиумах, совещаниях, школах и чтениях.
Структура и объем работы. Диссертация включает в себя введение, 7 глав, заключение и приложение, изложена на 332 страницах, содержит 112 рисунков и 14 таблиц, список литературы состоит из 346 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность исследований, перечислены цель и задачи исследования, сформулированы научная новизна и практическая значимость работы, дан обзор содержания диссертации, перечислены положения, выносимые на защиту.
Первая глава УАнализ современных способов поверхностного легирования металлов и сплавов с использованием концентрированных потоков энергииФ рассматриваются возможности интенсификации химико-термической обработки и новые способы упрочнения поверхности металлов с применением в качестве теплового источника лазерного излучения, электронных пучков и плазменных потоков и струй. Подробно освещены литературные данные по способам науглероживания металлов с использованием концентрированных потоков энергии. Показано, что одним из таких конструктивно простых способов упрочнения и защиты металлов и сплавов является легированием поверхности импульсными плазменными струями электровзрывных источников. Показана перспективность развития плазменных технологий легирования, в том числе и ЭВЛ. Результаты ЭВЛ определяются совместным действием на поверхность теплового, силового и химического факторов воздействия. Дан анализ принципиальных особенностей этих видов обработки и примеры их практического использования. Основным отличием ЭВЛ от других аналогичных является то, что источником легирующих элементов при его использовании является сама многофазная струя продуктов взрыва. Сформулирована цель и задачи исследования, раскрыта его научная значимость.
Во второй главе УУстановка, режимы обработки, материалы и методики исследованияФ описан принцип действия, функциональная электрическая схема (рис. 1) и основные технические характеристики оригинальной лабораторной установки для осуществления ЭВЛ. В целях изучения возможностей управления структурой импульсной плазменной струи как инструмента воздействия на поверхность при ЭВЛ выполнены исследования кинетики электровзрыва токопроводящих материалов (рис. 2).
Разрушение фольги круглой формы при разряде на нее емкостного накопителя энергии, осуществляемое с использованием коаксиально-торцевой системы электродов, начинается от внутреннего электрода фольги и распространяется к ее периферии. Время разрушения кромки фольги заданного радиуса зависит от ее толщины и электро- и теплофизических свойств, а также от характеристик разряда. Уравнение, связывающее эти величины друг с другом, показывает возможности управления процессом ЭВЛ.
Рис. 1. Функциональная электрическая схема лабораторной электровзрывной установки ЭВУ 60/10:
ПУ - пусковое устройство; ЕН - емкостный накопитель; ВН - форвакуумный насос; ДР - дуговой разрядник; ЗУ - зарядное устройство; ИПУ - импульсный плазменный ускоритель; КЗ - короткозамыкатель; ТК - технологическая камера; ИШ - изолирующая штанга
Разрушение металлических фольг при исследованных значениях зарядного напряжения может происходить в первой четверти периода разряда по механизму электрического взрыва. При этом энергия разрушения оказывается значительно меньше энергии сублимации. Вследствие этого формируемая струя продуктов взрыва является многофазной. Ее фронт образует быстрый плазменный компонент, образованный при разрушении центральной области фольги. Тыл струи включает в себя конденсированные частицы, образующиеся преимущественно из периферийных областей фольги. Замена круглой фольги на фольгу в форме креста или полоски при условии постоянного значения энергии накопителя должно приводить к уменьшению градиента фазового состава струи в направлении ее распространения и уменьшению разброса конденсированных частиц по размерам.
Рис. 2. Зависимости радиуса фронта разрушения фольги от времени разряда накопителя:
1 - для фольги из алюминия, использованной в настоящей работе; 2 - для медной фольги (точки на зависимости - данные измерений (по литературным сведениям))
Приведены результаты калориметрических исследований интенсивности теплового воздействия на облучаемую поверхность в зависимости от зарядного напряжения накопителя, диаметров внутреннего электрода плазменного ускорителя и диаметра сопла разрядной камеры, расстояния поверхности от среза сопла (рис. 3Ц5). Приведена инженерная схема расчета полученных зависимостей, в рамках которой определены параметры формируемых плазменных струй (табл. 1). Показано, что поглощаемая плотность мощности на оси струи прямо пропорциональна энергии разряда и обратно пропорциональна площади зоны плазменного воздействия, которая может быть рассчитана по радиусу границы струи для заданного расстояния поверхности от среза сопла. Уменьшение диаметра сопла приводит к увеличению угла наклона вектора скорости истечения плазмы на кромке сопла. В связи с этим поглощаемая плотность мощности с изменением диаметра сопла может изменяться немонотонно. Тепловое воздействие на поверхность уменьшается с ростом диаметра внутреннего электрода, что связано с уменьшением температуры плазмы в соответствии с законом Стефана-Больцмана. Расхождение экспериментальных и расчетных данных требует анализа влияния конденсированных частиц продуктов взрыва на степень сосредоточенности пучка.
Обоснован выбор для исследования различных видов одно- и двухкомпонентного ЭВЛ, а также выбор модельных материалов для обработки (системы TiЦAl, TiЦNi, TiЦC, FeЦC, NiЦC, CuЦC, FeЦC+B, NiЦC+B, FeЦAl, FeЦAl+B, FeЦCu, FeЦCu+B, NiЦCu, NiЦCu+B, X12MЦAl+B, P6M5ЦTi+B, X12ЦAl+Gd+B, X12ЦAl+SiC).
Рис. 3. Зависимости поглощаемой плотности мощности от квадрата зарядного напряжения. Диаметры dэ и dа внутреннего электрода и сопла соответственно, мм:
1 - 5, 15; 2 - 5, 10; 3 - 10, 15; 4 - 10, 20; 5 - 10, 10; 6 - 15, 15; 7 - 15, 20; 8 - 15, 10; 9 - 20, 15; 10 - 20, 20; 11 - 20, 10
Рис. 4. Зависимость поглощаемой плотности мощности от расстояния поверхности от среза сопла и от величины rfЦ2
Рис. 5. Зависимости пог-лощаемой плотности мощ-ности от диаметра внут-реннего электрода (пунк-тиром показаны расчетные зависимости, прямые - ре-зультат спрямления в координатах q Ц):
диаметр сопла , мм : а - 20; б - 15; в - 10
Таблица 1. Значения параметров плазменной струи при различных значениях диаметров внутреннего и внешнего электродов
, мм |
10Ц4, К | , МПа | , км/с | , | , мм | |||
= 20 мм: = 0,5; = 17,2 км/с; = 0,082 кг/м3; = 36 кПа | ||||||||
5 10 15 20 | 6,2 5,2 4,7 4,4 | 1,6 1,3 1,2 1,1 | 5,6 5,2 4,9 4,8 | 3,1 3,3 3,5 3,6 | 44,0 37,0 33,3 31,1 | 7,3 7,5 7,7 7,8 | 27,3 24,6 23,0 22,1 | 20,3 19,1 18,5 18,1 |
= 15 мм: = 0,46; = 16,5 км/с, = 0,153 кг/м3; = 64 кПа | ||||||||
5 10 15 20 | 7,8 6,8 6,3 6,0 | 3,7 3,7 3,0 2,8 | 6,3 5,9 5,7 5,3 | 2,6 2,8 2,9 3,0 | 57,4 50,2 46,4 44,0 | 6,8 7,0 7,1 7,1 | 32,2 29,3 28,7 27,8 | 20,1 19,0 18,4 18,1 |
= 10 мм: = 0,39; = 15,1 км/с; = 0,376 кг/м3; = 140 кПа | ||||||||
5 10 15 20 | 10,6 9,6 9,1 8,8 | 12,2 11,1 10,5 10,2 | 7,4 7,0 6,8 6,7 | 2,05 2,15 2,21 2,25 | 85,4 77,5 73,4 70,8 | 6,3 6,37 6,4 6,43 | 40,6 38,9 37,8 37,2 | 22,2 21,1 20,5 20,2 |
Рассмотрены особенности использованных в работе методов исследования микроструктуры и фазового состава модифицированных слоев и их эксплуатационных свойств.
В третьей главе УРельеф поверхности и структура зоны электровзрывного легированияФ рассмотрены результаты изучения методами растровой электронной и световой микроскопии рельефа поверхности материалов, подвергнутых ЭВЛ. Установлено, что на поверхности обработки формируется покрытие, сформированное конденсированными частицами тыла струи (рис. 6).
Удаление покрытия выявляет рельеф поверхности, по результатам исследований которого проведено условное деление режимов обработки на низко- и высокоинтенсивные. В первом случае в условиях несущественного влияния давления плазменной струи на расплав наблюдается образование поверхностных периодических структур (рис. 7) и возникает радиальное течение
расплава вдоль поверхности (рис. 8).
Рис. 6. Поры на поверхности железа после электровзрывного карбо-борирования поверхности, содержащие частицы бора. Сканирующая элек-тронная микроскопия
Рис. 7. Микрофотографии поверхностных периодических структур, сформированных при плазменной обработке металлов на периферии зоны оплавления и легирования: а - титан, ×300; б - железо, ×300; в - никель, ×75; г - медь, ×75 |
|
Рис. 8. Микрофотографии косых шлифов поверхностных слоев титана науглероженных в режимах обработки с образованием сдвиговых конвективных структур, ×200
Во втором - наблюдается развитое радиальное течение расплава от центра зоны плазменного воздействия к ее периферии, образуются микропоры и микротрещины. Параметры характерных режимов обработки определяются свойствами обрабатываемых металлов.
На косых и поперечных шлифах зоны легирования проведено исследование ее геометрических характеристик, строения и структуры. Обнаружено формирование на границе зоны легирования с зоной термического влияния тонкой переходной области (граничной полоски) (рис. 9).
Рис. 9. Схематичное изображение поперечного сечения зоны легирования после науглероживания в высокоинтенсивном режиме:
1 - слой покрытия, сформированный частицами углеграфитовых волокон; 2 - поверхность зоны легирования со следами радиального течения расплава; 3 - зона легирования; 4 - граничная полоска со следами гидродинамических возмущений границы с основой; 5 - зона термического влияния
При высокоинтенсивных режимах обработки в этой области обнаружены гидродинамические особенности, связанные с искривлением границы зоны легирования с основой, обусловленные течением расплава вдоль поверхности под действием неоднородного давления струи. При двухкомпонентном легировании с внесением в струю порошковой навески бора радиальное течение расплава от центра зоны легирования к периферии заметно подавляется, а граница зоны легирования с основой формируется ровной.
Увеличение интенсивности воздействия приводит к увеличению радиуса и глубины зоны легирования до 15Е20 мм и 20Е40 мкм соответственно. При этом наблюдается корреляция в изменении этих параметров: чем больше радиус зоны легирования, тем больше и её глубина. Толщина борированного слоя никеля, формируемого с использованием толстой фольги достигает 50 мкм.
ЭВЛ расплава осуществляется вплоть до границы оплавления, что свидетельствует о влиянии на результаты гидродинамических процессов тепломассопереноса. Конвективное перемешивание может быть обусловлено термо- и концентрационно-капиллярными возмущениями поверхности расплава, его радиальным течением от центра к периферии, перегревом под давлением струи и последующим вскипанием после окончания импульса.
егирование осуществляется как плазменными, так и конденсированными компонентами продуктов взрыва. Проникновение частиц углеграфитовых волокон в расплав определяется химической активностью металла по отношению к углероду и коррелирует со значением краевого угла смачивания расплавом частиц волокон: чем меньше угол, тем легче осуществляется их проникновение в расплав. При высокоинтенсивных режимах легирования в центральной области зоны легирования, располагающейся непосредственно под соплом ускорителя, формируется металл-углеродный композит (рис. 10).
Исследования методами рентгеновской дифрактометрии и рентгеноспектрального микроанализа зоны легирования, сформированной после различных режимов обработки, показали, что степень ее легирования может достигать нескольких десятков процентов.
Рис. 10. Микрофотография косого шлифа зоны науглероживания титана:
U - 1,9 кВ, ×200
При науглероживании титана формируется сравнительно однородный по глубине фазовый состав, что свидетельствует о высокой степени конвективного перемешивания расплава в процессе обработки. Его образуют твёрдый раствор углерода в металле и мелкодисперсные частицы карбида титана, а выше определённых режимов воздействия - также включения частиц углеграфитовых волокон, внесённые в расплав (рис. 11).
Рис. 11. Фрагменты дифракто-грамм поверхностных слоев ти-тана до (а) и после (б) электро-взрывного науглероживания
При науглероживании железа фазовый состав поверхностного слоя образуют дисперсная феррито-цементитная смесь и аустенит, а после режимов обработки, приводящих к выплеску, - также частицы углеграфитовых волокон. Цементит преимущественно располагается вблизи поверхности, а аустенит - вблизи границы оплавления. В режимах обработки с выплеском происходит выравнивание фазового состава по глубине. В модифицированных слоях действуют остаточные напряжения сжатия.
При науглероживании никеля образуется пересыщенные твёрдые растворы углерода в металле с различными концентрациями углерода и, вероятно, дисперсные карбиды. Общее содержание углерода в слое с увеличением интенсивности термосилового воздействия на поверхность в исследованных режимах обработки возрастает, достигая 9Е14 ат. %. Размер областей когерентного рассеяния увеличивается, изменяясь в пределах от 9 до 19 нм. Микротвердость поверхности монотонно возрастает с увеличением степени легирования.
При науглероживании меди углерод, растворённый в расплаве в процессе плазменного воздействия, на стадии кристаллизации выделяется с образованием глобул графита.
Обработка титана электровзрывом алюминиевых фольг приводит к образованию однородно легированных по глубине слоев с содержанием алюминия до 60Е80 ат. %. Фазовый состав слоев образуют твёрдый раствор титана в алюминии и смесь интерметаллидов TiAl3, ТiАl2 и ТiАl. Высокая степень легирования обусловлена вкладом конденсированных частиц продуктов взрыва. При двухкомпонентном легировании титана алюминием и углеродом фазовый состав включает в себя частицы карбида титана и углеграфитовых волокон. При никелировании титана получены слои с содержанием никеля до 40Е60 ат. %, образованные интерметаллидами титана, никеля и TiNi. Высокая степень легирования обусловлена вкладом конденсированных частиц. С ростом интенсивности воздействия степень легирования уменьшается.
Самозакалка науглероженных расплавов в условиях выделенного направления теплоотвода приводит к образованию текстуры кристаллизующихся металлических и карбидных фаз.
Кристаллизация науглероженных слоев железа в области граничной полоски происходит с образованием столбчатых зёрен, в области зоны легирования - дендритов, а вблизи поверхности - равноосных зёрен металлов и пластинчатого цементита. Кристаллизация никеля и меди происходит с образованием равноосных зёрен, причём у поверхности их размеры больше, чем вблизи границы оплавления. Кристаллизация металлизованных слоев происходит с образованием дисперсных структурных составляющих с размерами около 0,1 мкм вблизи границы оплавления и порядка нескольких микрометров вблизи поверхности.
В зоне термического влияния в образцах железа наблюдается образование новых мелких зёрен с размерами порядка 1 мкм, в то время как размеры зёрен в объёме достигают 100Е150 мкм. Электровзрывная обработка меди вызывает образование трещин по границам зёрен.
Распределение микротвердости по глубине отражает условия формирования поверхностных слоев путем их оплавления импульсной плазменной струей и конвективного перемешивания расплава с последующей самозакалкой. После борирования никеля микротвердость в 1,5 раза больше, чем микротвердость науглероженных слоев. После карбоборирования железа и никеля микротвердость примерно в 2 раза больше, чем после науглероживания.
В четвертой главе УПослойные электронно-микроскопичес-кие исследования фазового состава и дефектной субструктуры поверхностных слоев металлов после одно- и двухкомпонентного легированияФ рассмотрены особенности строения, структуры и фазового состава зоны легирования, выявленные с использованием высокоинформативного метода просвечивающей электронной микроскопии тонких фольг.
Детализировано ее строение. Показано, что ЭВЛ в условиях продолжающегося продвижения фронта плавления глубь с последующей самозакалкой приводит к закономерному формированию строения зоны легирования с образованием ряда слоев. На поверхности зоны легирования выявлен тонкий приповерхностный слой с нанокристаллической или квазиаморфной структурой (рис. 11). Ниже располагался промежуточный слой, характеризующийся в зависимости от вида легирования различной степенью развития ячеистой кристаллизации (рис. 12), и приграничный слой, соседствующий с зоной термического влияния и имеющий зеренную структуру (рис. 13). На границе зоны легирования с основой обнаруживался разделяющий их тонкий подслой с нанокристаллической структурой и низкой степенью легирования.
Рис. 11. Структура приповерхностного слоя на глубине 0,3 мкм после электровзрывного науглероживания:
а - светлое поле; б - темное поле в рефлексе [111]Ni(С)+[011]С; в - микроэлектронограмма к б. Стрелкой указан рефлекс темного поля
Рис. 12. Структура промежуточного слоя на глубине 1 мкм:
а - светлое поле, б - темное поле в рефлексе [301]С, в - микроэлектронограмма к б. Стрелкой указан рефлекс темного поля
При однокомпонентном легировании основной объем зоны легирования представлен слоем с зеренной структурой, а при двухкомпонентном с использованием порошковой навески - слоем с ячеистой кристаллизацией. Это коррелирует с тем, что добавление в струю порошковых навесок подавляет радиальное течение расплава. Показано, что ЭВЛ расплава осуществляется вплоть до границы оплавления, что свидетельствует об определяющей роли конвективного перемешивания.
Рис. 13. Структуры приграничного слоя на глубине 25 мкм:
а - светлое поле, б - темное поле, полученное в рефлексе [003]Ni3С. Стрелкой указан рефлекс темного поля
Степень легирования в промежуточном и в приграничном слоях с глубиной уменьшается, а размеры структурных составляющих увеличиваются. Степень легирования приповерхностного слоя максимальна, а слоя на границе с основой минимальна.
Обнаружение нанокристаллического слоя на границе с основой коррелирует с выявлением методом световой микроскопии граничной полоски, которая согласно данным световой микроскопии также имеет измельченную структур.
Уменьшение поперечного размера ячеек кристаллизации при одновременном уменьшении их разориентации при приближении к поверхности косвенно свидетельствует о кристаллизации с выделенным направлением теплоотвода не только в объем металла, но и в окружающую среду.
Электронно-микроскопические исследования, также как и результаты изучения модифицированных слоев методом световой микроскопии показали, что легирование осуществляется как плазменной составляющей струи, так и конденсированными частицами. Об этом свидетельствуют частицы структурно свободного бора, наблюдающиеся в зоне обработки при двухкомпонентном легировании, а также частицы алюминия и меди.
Обработка сопровождается неконтролируемым внесением в зону легирования кислорода и углерода.
В зоне термического влияния наблюдается повышенная плотность дислокаций, образующих различные дислокационные структуры.
Глава 5 УАнализ силовых, тепловых и физико-механических процессов формирования поверхностных слоевФ выполнен анализ силовых, тепловых и физико-механических процессов при воздействии импульсных плазменных струй на металлы.
Различия в результатах обработки разных металлов объяснены различиями их физических свойств.
Интенсивность обработки и давление плазменной струи на поверхность зависят от зарядного напряжения по закону соответственно. Тепловой КПД обработки составляет 8%.
Экспериментальная зависимость радиуса зоны науглероживания модельных металлов от зарядного напряжения накопителя может быть описана, исходя из представления о нормальном распределении давления струи и интенсивности теплового воздействия на облучаемой поверхности (рис. 14).
Рис. 14. Экспериментальные и расчетные (показаны пунктиром) зависимости радиуса зоны легирования от величины зарядного напряжения при науглероживании титана (ο), железа (×), никеля () и меди (Δ)
Использование теплофизической модели нагрева поверхности плоским тепловым источником, зависимости массовой скорости струи от величины зарядного напряжения и выражения для давления в ударно-сжатом слое позволяет получить расчетную зависимость глубины зоны науглероживания на оси струи от зарядного напряжения. Зависимость учитывает понижение уровня расплава вследствие его вытеснения к периферии зоны легирования под действием неоднородного давления на поверхность (рис. 15).
,
мкм 40 30 20 10 0 | 0,1 0,2 0,3 0,4 0,5 |
Рис. 15. Зависимости глубины науглероженных слоев с учетом понижения уровня расплава под давлением пучка от режима воздействия для титана (ο), железа (×), никеля () и меди (Δ)
Экспериментальные значения глубины зоны науглероживания с поправкой на понижение уровня расплава под давлением струи отличаются от их расчетных значений, что требует учета влияния конвективного перемешивания расплава и изменения его свойств вследствие науглероживания.
Показана возможность продвижения фронта плавления в глубь металла уже после окончания импульса за счет тепла, накопленного в зоне легирования при облучении поверхности. Это объясняет причину образования граничной полоски, отделяющую модифицированные слои от основы.
Давление струи на поверхность при высокоинтенсивных режимах обработки приводит к перегреву расплава выше температуры кипения при нормальном давлении и последующему вскипанию его после окончания импульса воздействия. Это обусловливает один из механизмов конвективного перемешивания расплава и выравнивания распределения легирующей добавки по глубине зоны легирования. Экспериментальным подтверждением пузырькового кипения является микропористость поверхности, хорошо различимая на микроуровне.
Показана возможность синтеза интерметаллидных покрытий на поверхности металлов путём оплавления предварительно нанесённых слоёв. Фазовый состав покрытий задаётся соотношением между толщинами оплавляемых слоёв, а тепловой режим обработки рассчитывается по теплофизической модели нагрева поверхности. Способ позволяет получать беспористые покрытия с необходимым комплексом свойств и металлургической связью с основой детали.
Рассмотрены особенности ячеистой кристаллизации зоны легирования. Показано, что они не противоречат теории концентрационного переохлаждения.
Рассмотрены физико-механические процессы в зоне термического влияния. Электровзрывная обработка железа приводит к формированию в зоне термического влияния фазово-наклепанного слоя без последующей рекристаллизации, которая не успевает завершиться в силу кратковременности плазменного воздействия и развивается при последующем высокотемпературном отжиге. Причина зернограничного растрескивания, наблюдающегося в зоне термического влияния при обработке меди, может быть связана с ослаблением границ зерен примесью кислорода, понижающей энергоемкость разрушения под действием возникающих сдвиговых напряжений.
Показано, что импульсная электровзрывная обработка может эффективно использовать для упрочнения керамических теплозащитных покрытий лопаток газотурбинного двигателя путём предварительного наведения на них сетки трещин на глубину 0,1Е0,2 от толщины покрытия. Это позволяет снимать концентрацию напряжения в поверхностном слое в процессе эксплуатации покрытий и замедлять их разрушение в два раза.
Глава 6 УАнализ физико-химических и гидродинамических процессов тепломассопереноса в оплавляемых слояхФ проведено моделирование физико-химических и гидродинамических процессов тепломассопереноса.
Предложена модель науглероживания оплавляемых слоев металлов при воздействии на поверхность импульсных плазменных струй, сформированных при электрическом взрыве углеграфитовых волокон. С учетом результатов рентгенографического определения содержания углерода в модифицированных легированием слоях при различных режимах электровзрывной обработки установлены значения коэффициентов массопереноса через границу раздела плазма-расплав. Определены энергии активации науглероживания металлов, позволяющие считать, что при обработке железа лимитирующей стадией процесса является адсорбционно-химическое взаимодействие углерода с расплавом, а при обработке никеля - конвективное перемешивание расплава.
Анализ имеющихся в литературе теоретических моделей возникновения неустойчивости поверхности расплава, приводящей к образованию поверхностных периодических структур на поверхности расплава, позволил выбрать механизм, основанный на эффекте Марангони. Предложена расчётная формула для пространственного периода поверхностных периодических структур, учитывающая зависимость возмущений поверхностного натяжения от возмущений температуры и концентрации легирующей добавки. Проведённые оценки различных физических параметров наблюдающихся на опыте поверхностных периодических структур показывают хорошее соответствие расчётных и экспериментальных данных и подтверждают обоснованность модельных представлений.
Сравнительный анализ длин волн поверхностных периодических структур на периферии и в центральной области зоны легирования показывает, что в процессе плазменного воздействия возможна эволюция конвективного перемешивания с увеличением длины волны по механизму бифуркаций удвоения периода.
Формирование сдвиговых конвективных структур, наблюдающееся при ЭВЛ, может быть объяснено моделью сдвиговой неустойчивости Кельвина-Гельмгольца, возникающей при течении расплава под действием давления плазменного струи в условиях поперечного градиента скорости при движении вглубь фронта плавления в процессе обработки.
Учёт конвективных механизмов перемешивания расплава позволяет объяснить проникновение легирующей добавки вплоть до границы оплавления и зависимость глубины зоны легирования от режима обработки. С учетом развитых модельных представлений о конвективных механизмах тепломассопереноса при термоконцентрационно-капиллярной конвекции и конвекции при радиальном течении расплава рассчитаны значения эффективной температуропроводности расплава в процессе плазменного воздействия.
В главе 7 УПовышение свойств модифицированных слоев и возможности практического использования электровзрывного легированияФ продемонстрированы возможности кратного повышения служебных характеристик модифицированных слоев металлов и сплавов. Сделан вывод, что такая обработка обладает рядом технологических и экономических преимуществ перед другими аналогичными способами.
Испытания на микротвёрдость, абразивную износостойкость и жаростойкость в атмосфере воздуха показали, что как ЭВЛ поверхности стали Х12М бором совместно с гадолинием, так и электровзрывное нанесение аналогичных покрытий могут быть с успехом использованы для упрочнения и защиты инструментальных материалов, в условиях, когда поверхность должна обладать одновременно комплексом необходимых эксплуатационных свойств, таких как микротвердость, износо- и жаростойкость.
Показано, что обработка поверхности с плавлением и насыщением поверхностных слоев инструментальной стали Х12 компонентами многофазной струи, сформированной электровзрывом алюминиевой фольги с порошковой навеской ультрадисперсного порошка карбида кремния, позволяет получить зону легирования толщиной 20 мкм. При этом обработка приводит к незначительному уменьшению массы образцов. Легирование и последующая самозакалка расплава приводит к стабилизации γ-фазы. Микротвердость поверхности в результате обработки увеличилась в 2,8 раза, а абразивная износостойкость - в 8 раз. Жаростойкость в атмосфере воздуха возросла в 9, 3,5 и 2 раза при температуре испытаний 800, 850 и 900 С соответственно.
Электровзрывное алитирование титана дает возможность создавать защитные слои толщиной до 40 мкм. Скорость окисления поверхности после алитирования при температуре 800 оС уменьшается пятикратно. Дополнительное армирование алитированных слоев порошковыми частицами оксида алюминия приводит к увеличению износостойкости в условиях сухого трения скольжения в 300 раз без понижения жаростойкости. Комплексное легирование титана совместным электровзрывом алюминиевых фольг и углеграфитовых волокон способствует повышению жаростойкости в два раза, а износостойкости в шесть раз.
Разработанные способы ЭВЛ и устройство для упрочнения внутренних цилиндрических поверхностей применены для обработки деталей газотурбинного двигателя. ЭВЛ поверхности чугунной детали, работающей в условиях фреттинг-коррозии, позволило увеличить ее ресурс в 1,3 раза.
Проведена сравнительная оценка экономической эффективности упрочнения сверл электровзрывным способом и ионно-плазменным нанесением покрытий показала конкурентоспособность ЭВЛ.
В заключении перечислены основные результаты исследования, отмечены перспективные направления дальнейшей работы.
ОСНОВНЫЕ ВЫВОДЫ
1. Разработаны материаловедческие и физико-технические основы упрочнения и защиты поверхности металлов и сплавов при одно- и двухкомпонентном ЭВЛ.
2. Проведен расчет параметров плазменной струи, радиуса зоны плазменного воздействия, давления и температуры плазмы в ударно-сжатом слое вблизи облучаемой поверхности, а также поглощаемой плотности мощности на оси струи в зависимости от конструктивных параметров плазменного ускорителя, расстояния от среза сопла до облучаемой поверхности, зарядного напряжения накопителя. Получено удовлетворительное согласие результатов вычислений с экспериментально определенными данными. Предложено модельное описание разрушения фольги, служащей источником многофазной плазмы, и показаны возможности управления структурой формируемой струи выбором материала взрываемого проводника, его толщины и формы, а также энергии накопителя.
3. Экспериментально определены режимы ЭВЛ металлов, связанные с плавлением поверхности, выплеском расплава, проявлением конвективных механизмов тепломассопереноса, эффекта последействия, физико-химическими и физико-механическими свойствами используемых материалов.
4. Установлено, что при двухкомпонентном легировании с использованием порошковых навесок с одной стороны подавляется радиальное течение расплава, а с другой - увеличивается доля областей с развитым рельефом, образованных частицами конденсированной фазы струи, закрепившимися на облучаемой поверхности.
5. Показано, что ЭВЛ осуществляется как плазменным компонентом, так и конденсированными частицами продуктов взрыва. Насыщение расплава осуществляется вплоть до границы с основой. Для различных режимах обработки экспериментально определены радиус и глубина зоны легирования, строение модифицированных слоев. Изучены их микроструктура, фазовый состав, степень легирования в зависимости от режимов обработки.
6. Установлено, что радиальное строение зоны легирования представлено тремя областями (центральной, промежуточной и периферийной), отличающимися различной степенью развития рельефа поверхности и степенью легирования расплава. Выявлено, что по глубине зоны легирования закономерным образом располагается следующие слои с различной степенью легирования, фазовым составом, размерами и формой кристаллитов, плотностью дислокаций и другими особенностям структуры: нанокомпозитный приповерхностный; промежуточный с ячеистой кристаллизацией; приграничный с зеренной структурой и тонкий наноструктурный подслой на границе с зоной термического влияния.
7. Показано, что при однокомпонентном легировании основным по объему является слой с зеренной кристаллизацией, а в случае двухкомпонентного легирования с использованием порошковых навесок промежуточный - слой с ячеистой кристаллизацией. Толщина приповерхностного слоя синтезированных фаз при двухкомпонентном легировании больше, чем в случае однокомпонентного легирования.
8. Установлено, что выравнивание по глубине степени легирования обусловлено термосиловым воздействием на расплав в условиях градиентов температуры и давления, приводящем к развитию конвективных процессов. Результаты моделирования согласуются с экспериментальными данными и позволяют проводить расчеты вкладов в тепломассоперенос выявленных термоконцентрационно-капиллярного и сдвигового перемешивания расплава.
9. Анализ термосилового воздействия струи продуктов взрыва на поверхность показал, что при обработке в высокоинтенсивных режимах достигается перегрев расплава и его последующее вскипание. Оно сопровождается интенсивным охлаждением, связанным с испарением, и способствует формированию нанокомпозитных структур. С другой стороны, высокая скорость охлаждения подавляет процессы рекристаллизации в зоне термического влияния.
10. Проведено модельное описание науглероживания железа и никеля плазменным компонентом многофазной струи, позволившее объяснить возрастание степени легирования расплава с ростом термосилового воздействия плазмы на поверхность.
11. Установлено, что ЭВЛ приводит к одновременному повышению до нескольких раз различных эксплуатационных свойств - микротвердости, жаро- и износостойкости в условиях абразивного износа и сухого трения скольжения, устойчивости к фреттинг-коррозии. Упрочнение достигается за счет высокой степени легирования с образованием мелкодисперсных карбидных и интерметаллидных фаз в вязкой металлической матрице.
12. Разработанные способы ЭВЛ и устройство для упрочнения внутренних цилиндрических поверхностей деталей применены для обработки деталей газотурбинного двигателя. Дополнительное повышение свойств и изменение параметров слоев достигается при комбинированной обработке, сочетающей ЭВЛ и последующую термообработку. Сравнительная оценка предполагаемой экономической эффективности использования ЭВЛ в производстве показала перспективность дальнейших разработок этого способа поверхностного упрочнения металлов.
Результаты диссертации опубликованы в следующих работах.
Монографии:
- Основы технологии обработки поверхности материалов импульсной гетерогенной плазмой: Монография / Е.А. Будовских, В.Д. Сарычев, В.Е. Громов, П.С. Носарев, Е.В. Мартусевич. - Новокузнецк, СибГИУ, 2002. - 170 с.
- Физические основы электровзрывного легирования металлов и сплавов / А.Я. Багаутдинов, Е.А. Будовских, Ю.Ф. Иванов, В.Е. Громов. - Новокузнецк, СибГИУ. - 2007. - 304 с.
Авторские свидетельства:
1. А.с. 1612633 СССР, МКИ3 С 23 С 14/32. Устройство для нанесения покрытий на внутреннюю цилиндрическую поверхность изделий / А.Э. Аверсон, В.В. Баринов, Е.А. Будовских и др. (СССР). - 4 с.: табл. 2, ил.
2. А.с. 1750269 СССР, МКИ3 С 23 С 14/32. Способ получения слоя интерметаллида на поверхности титановых изделий / П.С. Носарев, Е.А. Будовских, А.Э. Аверсон и др. (СССР). - 6 с.: табл.
Статьи в журналах из перечня ВАК
1. Особенности поверхностного легирования импульсными потоками плазмы электрически взрываемых проводников / В.Д. Сарычев, В.А. Петрунин, Е.А. Будовских и др. // Изв. вуз. Чер. металлургия. - 1991. - № 4 - С. 64Ц67.
2. Обработка титанового сплава импульсной гетерогенной плазмой с оплавлением и легированием поверхностного слоя алюминием и никелем / В.П. Симаков, Е.А. Будовских, П.С. Носарев, Г.В. Бобров // Физика и химия обраб. материалов. - 1991. - № 5. - С. 60Ц66.
3. Науглероживание с оплавлением поверхности титанового сплава и железа импульсным воздействием гетерогенных плазменных пучков / Е.А. Будовских, В.Д. Сарычев, О.А. Коврова и др. // Изв. вуз. Чер. металлургия. - 1992. - № 6. - С. 89Ц93.
4. О конвективном механизме жидкофазного легирования поверхности металлов при импульсном плазменном воздействии / Е.А. Будовских, В.Д. Сарычев, В.П. Симаков, П.С. Носарев // Физика и химия обраб. материалов. - 1993. - № 1. - С. 59Ц66.
5. Будовских Е.А., Назарова Н.Н., Носарев П.С. Фазовый состав и микроструктура поверхностных слоев железа, науглероженных импульсным воздействием гетерогенных плазменных пучков // Изв. вуз. Чер. металлургия. - 1994. - № 12. - С. 29Ц33.
6. Будовских Е.А., Носарев П.С. Особенности формирования структуры оплавляемых слоев металлов при импульсной плазменной обработке // Изв. вузов. Чер. металлургия. - 1996. - № 2. - С. 74Ц79.
7. Будовских Е.А., Петрунин В.А., Носарев П.С. Образование трещин в поверхностных слоях металлов при электровзрывной обработке // Изв. вуз. Чер. металлургия. - 1999. - № 10. - С. 39Ц43.
8. Синтез интерметаллидных соединений при тепловом воздействии импульсной плазмы на систему покрытие-основа / В.П. Симаков, Е.А. Будовских, Н.Н. Назарова и др. // Изв. вуз. Чер. металлургия. - 2000. - № 12. - С. 60Ц62.
9. Будовских Е.А., Носарев П.С. Влияние режима импульсного плазменного воздействия на параметры зоны науглероживания поверхности металлов // Материаловедение. - 2001. - № 3. - С. 50Ц53.
10. Повышение жаро- и износостойкости титана комплексным электровзрывным легированием поверхности / Е.А. Будовских, Л.В. Манжос, Е.В. Мартусевич, И.С. Астахова // Изв. вузов. Чер. металлургия. - 2003. № 6. - С. 38Ц40.
11. Будовских Е.А., Мартусевич Е.В. Формирование градиентных структур электровзрывным науглероживанием металлов // Изв. вуз. Чер. металлургия. - 2004. - № 6. - С. 37Ц41.
12. Мартусевич Е.В., Будовских Е.А. Кинетика электровзрыва фольги // Изв. вуз. Чер. металлургия. - 2004. - № 12. - С. 31Ц32.
13. Влияние режима обработки на степень науглероживания железа при электровзрывном легировании / Е.В. Мартусевич, Е.А. Будовских, В.К. Каратеев, В.Е. Громов // Заготов. пр-ва в машиностроении. - 2005. - № 1. - С. 46Ц48.
14. Мезоструктурный уровень модификации никеля бором при электровзрывной обработке поверхности / А.Я. Багаутдинов, Е.А. Будовских, Ю.Ф. Иванов, Е.В. Мартусевич, В.Е. Громов // Физ. мезомеханика. - 2005. - № 4. - С. 89Ц94.
15. Упрочнение и защита поверхности инструментальной стали комплексным электровзрывным легированием и нанесением покрытий / А.Я. Багаутдинов, Е.А. Будовских, В.Ф. Горюшкин и др. // Заготов. пр-ва в машиностроении. - 2005. - № 9. - С. 44Ц45.
16. Багаутдинов А.Я., Будовских Е.А., Иванов Ю. Ф. Определение микротвердости поверхностных слоев никеля после электровзрывного науглероживания // Изв. вуз. Чер. металлургия. - 2005. - № 9. - С. 67.
17. Рентгенографическое исследование поверхностных слоев никеля после электровзрывного науглероживания в различных режимах / В.К. Каратеев, А.Я. Багаутдинов, Е.А. Будовских и др. // Изв. вуз. Чер. металлургия. - 2005. - № 8. - С. 34Ц36.
18. Электровзрывное легирование железа углеродом: рельеф поверхности, фазовый состав и дефектная субструктура / А.Я. Багаутдинов, Е.А. Будовских, Ю.Ф. Иванов и др. // Изв. вузов. Физика. - 2005. - № 9. - 36Ц41.
19. Электровзрывное карбоборирование железа: рельеф поверхности, фазовый состав и дефектная субструктура модифицированного слоя / А.Я. Багаутдинов, Е.А. Будовских, Ю.Ф. Иванов и др. // Вопросы материаловедения. - 2005. - № 3 (43). - 32Ц39.
20. Структурно-фазовый анализ никеля, подвергнутого электровзрывному легированию / Е.А. Будовских, А.Я. Багаутдинов, Ю.Ф. Иванов и др. // Деформация и разрушение материалов. - 2005. - № 11. - С. 28Ц32.
21. Электронно-микроскопические исследования поверхностного слоя никеля после электровзрывного науглероживания и карбоборирования / А.Я. Багаутдинов, Е.А. Будовских, Ю.Ф. Иванов и др. // Физика и химия обраб. материалов. - 2006. - № 2. - С. 143Ц150.
22. Моделирование тепломассопереноса через границу плазма-расплав при электровзрывном науглероживании железа и никеля / А.Я. Багаутдинов, Е.А. Будовских, Е.В. Мартусевич, В.Е. Громов // Изв. вузов. Чер. металлургия. - 2005. - № 12. - С. 22Ц24.
23. Особенности электровзрывного карбоборирования железа и никеля / Е.А. Будовских, Ю.Ф. Иванов, А.Я. Багаутдинов и др. // Деформация и разрушение материалов. - 2006. - № 3. - С. 37Ц43.
24. Структурно-фазовый анализ поверхности никеля после электровзрывного легирования медью / О.А. Цвиркун, А.Я. Багаутдинов, Ю.Ф. Иванов, Е.А. Будовских, В.Е. Громов // Изв. вуз. Чер. металлургия. - 2006. - № 6. - 28Ц29.
25. Электровзрывное легирование железа медью: градиент фазового состава и дефектной субструктуры модифицированных слоев / О.А. Цвиркун, Е.А. Будовских, Ю.Ф. Иванов, В.Е. Громов // Физ. мезомеханика. - 2006. - Т. 9. - № 4. - С. 49Ц54.
26. Цвиркун О.А., Будовских Е.А., Громов В.Е. Фазовый состав и дефектная субструктура зоны электровзрывного меднения и боромеднения железа / Изв. вуз. Чер. металлургия. - 2006. - № 8. - С. 55Ц60.
27. Структурно-масштабные уровни рельефа поверхности железа и никеля после электровзрывного легирования в высокоэнергетичном режиме / О.А. Цвиркун, Ю.Ф. Иванов, Е.А. Будовских, В.Е. Громов // Физ. мезомеханика. - 2006. - Т. 9. - №. 5. - С. 91Ц95.
28. Электровзрывное боромеднение железа: структурно-фазовое состояние зоны легирования / О.А. Цвиркун, Ю.Ф. Иванов, Е.А. Будовских, В.Е. Громов // Материаловедение. - 2006. - № 11. - С. 37Ц40.
29. Фазовый состав и дефектная субструктура зоны электровзрывного алитирования железа / О.А. Цвиркун, Ю.Ф. Иванов, Е.А. Будовских, В.Е. Громов // Заготов. пр-ва в машиностроении. - 2006. - № 11. - С. 37Ц40.
30. Электровзрывное бороалитирование железа: фазовый состав и дефектная субструктура / О.А. Цвиркун, Ю.Ф. Иванов, Е.А. Будовских, В.Е. Громов. - Изв. вузов. Чер. металлургия. - 2007. - № 2. - С. 46Ц50. (Electroexplosive BoronЦAluminium Coating of Iron: Phase Composition and Defect Substructure / O.A. Tsvikun, Yu.F. Ivanov, E.A. Budovskikh, and V.E. Gromov // Steel in Translation, 2007. Vol. 37. No. 2, pp. 106Ц109).
31. Формирование фазового состава и дефектной субструктуры зоны электровзрывного боромеднения никеля / О.А. Цвиркун, А.Я. Багаутдинов, Ю.Ф. Иванов, Е.А. Будовских, В.Е. Громов // Изв вузов. Физика. - 2007. - № 3. - С. 3Ц7.
32. Градиентное состояние поверхностных слоев железа и никеля после электровзрывного науглероживания и карбоборирования / А.Я. Багаутдинов, О.А. Цвиркун, Е.А. Будовских и др. // Металлург. - 2007. - № 3. - С. 52Ц57.
33. Морфологические особенности кристаллизации поверхностных слоев железа и никеля при электровзрывном легировании / О.А. Цвиркун, Е.А. Будовских, А.Я. Багаутдинов и др. // Изв. вузов. Чер. металлургия. - 2007. - № 6. - С. 40Ц45.
Статьи в других изданиях:
1. Импульсное науглероживание никеля и меди воздействием плазменных пучков / Е.А. Будовских, В.Д. Сарычев, В.П. Симаков, П.С. Носарев // Электрон. обраб. материалов. - 1993. - № 3. - С. 20Ц24.
2. Поведение теплозащитных покрытий в условиях импульсного теплового нагружения / Е.А. Будовских, Н.Н. Назарова, В.П. Симаков, П.С. Носарев // Физика процессов деформации и разрушения и прогнозирование механического поведения материалов: Тр. 36 Междунар. семинара УАктуал. проблемы прочностиФ. 26Ц29 сент. 2000. - Витебск, 2000. Ч. 1. С. 260Ц264.
3. Мартусевич Е.В., Будовских Е.А., Горюшкин В.Ф. Жаро-, износостойкость и сопротивление коррозии инструментальных сталей после электровзрывного бороалитирования и боротитанирования поверхности // Вестн. Тамбов. ун-та. Сер. Естеств. и техн. науки. - 2003. - Т. 8. - Вып. 4. - С. 714Ц715.
4. Формирование износо- и жаростойких поверхностных слоев при электровзрывной обработке инструментальной стали / Е.А. Будовских, В.Ф. Горюшкин, Е.В. Мартусевич. В.Е. Громов, А.Я. Багаутдинов // Фундам. проблемы соврем. материаловедения. - 2005. - № 1. - С. 95Ц97.
5. Физические особенности электровзрывного легирования металлов / Е.А. Будовских, А.Я. Багаутдинов, О.А. Цвиркун и др. // Фундам. проблемы соврем. материаловедения. - 2005. - Т. 2. - № 3. - С. 110Ц113.
6. Цвиркун О.А., Будовских Е.А., Громов В.Е. Механизмы конвективного тепломассопереноса при электровзрывном легировании металлов // Вестн. горно-металлург. секции Рос. акад. естеств. наук. Отд-ние металлургии: Сб. науч. тр. Вып. 16: Сиб. гос. индустр. ун-т. - Новокузнецк, 2006. С. 154Ц160.
7. Оптическая микроскопия и микротвердость зоны электровзрывного легирования железа и никеля после высокоинтенсивной обработки / А.Я. Багаутдинов, Е.А. Будовских, О.А. Цвиркун, Е.В. Мартусевич, В.Е. Громов // Вестн. Рос. акад. естеств. наук (ЗСО). - 2006. - Вып. 8. - С. 143Ц150.
8. Строение и структурно-фазовые состояния зоны электровзрывного меднения и боромеднения никеля / О.А. Цвиркун. А.Я. Багаутдинов, Е.А. Будовских и др. // Фундаментальные проблемы в 3-м тысячелетии: Материалы 3-й Всерос. конф. молодых ученых в рамках Рос. науч. форума с междунар. участием УДемидовские чтенияФ. 3Ц6 марта 2006. - Томск, 2006. С. 131Ц134.
9. Формирование структурно-фазовых состояний при электровзрывном алитировании и меднении поверхностных слоев железа / О.А. Цвиркун, Е.А. Будовских, Ю.Ф. Иванов, В.Е. Громов // Фундам. проблемы соврем. материаловедения. - 2006. - Т. 3. - № 3. - С. 17Ц21.
10. Будовских Е.А. Послойные исследования нанокомпозитных поверхностных слоев, сформированных на железе и никеле электровзрывным легированием // Вестн. Рос. акад. естеств. наук. - 2006. - Т. 6. - № 3. - С. 77Ц85.
11. Electro-explosive Alloying of Metals: Surface Morphology, Phase Structure and Defective Substructure / E.A. Budovskikh, O.A. Tsvirkun, Ju.F. Ivanov, V.E. Gromov // Изв. вузов. Физика. - 2006. - № 8. - Приложение. - С. 367Ц370.
12. Микротвердость поверхности зоны электровзрывного карбоборирования и науглероживания железа / О.А. Цвиркун, Е.А. Будовских, В.А. Петрунин и др. // Вестн. Магнитогор. техн. ун-та им. Г.И. Носова. - 2006. - № 4. - С. 83Ц84.
13. Упрочнение и защита поверхности стали Х12 электровзрывным легированием / О.А. Цвиркун, Е.А. Будовских, В.В. Руднева и др. // Журнал функцион. материалов. - 2007. - Т. 1. - № 3. - С. 117Ц119.
14. Структурно-фазовые состояния поверхностных слоев железа после электровзрывного алитирования и бороалитирования / О.А. Цвиркун, Е.А. Будовских, Ю.Ф. Иванов, В.Е. Громов // Особенности структуры и свойств перспективных материалов / Под общ. ред. А.И. Потекаева. - Томск, 2006. С. 169Ц183.
15. Будовских Е.А., Иванов Ю.Ф., Громов В.Е. Особенности формирования поверхностных слоев металлов и сплавов при электровзрывном легировании // Структура и свойства перспективных металлических материалов / Под общ. ред. А.И. Потекаева. - Томск, 2007. С. 195Ц212.
16. Будовских Е.А., Иванов Ю.Ф., Громов В.Е. Формирование нанокомпозитных слоев на поверхности железа и никеля при электровзрывном легировании // Эволюция структуры и свойства металлических материалов / Под общ. ред. А.И. Потекаева. - Томск, 2007. С. 289Ц306.
17. Багаутдинов А.Я., Будовских Е.А., Иванов Ю.Ф., Громов В.Е. Закономерности формирования градиентных структурно-фазовых состояний при электровзрывном науглероживании и карбоборировании металлов // Контроль. Диагностика. Ресурс: Сб. науч. тр., посвящ. 60-летию проф. А.Н. Смирнова / Под общ. ред. В.Ю. Блюменштейна, А.А. Кречетова. - Кемерово, 2007. С. 155Ц167.
Изд. лиц. № 01439 от 05.04.2000. Подписано в печать Е 2008
Формат бумаги 60х84 1/16. Бумага писчая. Печать офсетная
Усл. печ. л. . Уч. изд. л. . Тираж 100 экз. Заказ №
Сибирский государственный индустриальный университет.
654007, г. Новокузнецк, ул. Кирова, 42
Авторефераты по всем темам >> Авторефераты по физике