План Введение Аварии на химически опасных объектах и их классификация Аварии на гидродинамических опасных объектах
Вид материала | Лекция |
СодержаниеХарактеристика и классификация ЧС техногенного характера |
- Курс «бжд: Защита в чс и го» 2006 год «аварии на химически опасных объектах», 191.41kb.
- «Безопасность жизнедеятельности», 652.21kb.
- Опасных производственных объектах и требований к оформлению заключения данной экспертизы, 116.73kb.
- Рекомендации по разработке планов защиты населения при авариях на химически опасных, 351.52kb.
- Транспортные аварии, 102.46kb.
- «Обеспечение промышленной безопасности на взрывопожароопасных и химически опасных производственных, 301.63kb.
- Вопрос 10 повышение защитных свойств помещений от проникновения радиоактивных, отравляющих, 42.62kb.
- Авторское выполнение научных работ на заказ. Контроль плагиата, скидки, гарантии, прямое, 611.55kb.
- План реферата. 2 Введение. 3 Чс техногенного характера 4 Транспортные аварии, 114.78kb.
- Аварии с выбросом (угрозой выброса) аварийно химически опасных веществ, 416.09kb.
Лекция 7
^ Характеристика и классификация ЧС техногенного характера
Аварии на радиационно- опасных объектах
План
1. Общие понятия о радиации.
2. Классификация аварий на радиационно – опасных объектах.
3. Действия и рекомендации населению в районе заражения.
Радиация в XX в. представляет собой растущую угрозу для всего человечества. Радиоактивные вещества, перерабатываемые в ядерную энергию, попадающие в строительные материалы и, наконец, используемые в военных целях, оказывают вредное воздействие на здоровье людей. Поэтому защита от ионизирующих излучений (радиационная безопасность) превращается в одну из важнейших задач по обеспечению безопасности жизнедеятельности человека.
В настоящее время практически в любой отрасли хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможно вместе с тем и большую опасность для людей и окружающей среды, о чем свидетельствуют аварии на атомных станциях в США, Англии, Франции, Японии и в СССР (Чернобыльская). Атомные установки эксплуатируются на ледоколах и лихтеровозах, на крейсерах и подводных лодках, в космических аппаратах.
Ядерные материалы приходится возить, хранить, перерабатывать. Все эти операции создают дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира. Радиоактивные вещества (или радионуклиды) отличает способность испускать ионизирующее излучение. Причиной его является нестабильность атомного ядра, в результате которой оно подвергается самопроизвольному распаду. Такой процесс самопроизвольных превращений ядер атомов неустойчивых элементов называют радиоактивным распадом, или радиоактивностью. Акт распада сопровождается испусканием излучений в виде гамма-лучей, альфа-, бета-частиц и нейтронов..
Радиоактивные излучения характеризуются различной проникающей и ионизирующей (повреждающей) способностью. Альфа-частицы обладают столь малой проникающей способностью, что задерживаются листом обыкновенной бумаги. Их пробег в воздухе равен 2-9 см, в тканях живого организма - долям миллиметра. Иными словами, эти частицы при наружном воздействии на живой организм неспособны проникнуть через слой кожи. Вместе с тем ионизирующая способность таких частиц чрезвычайно велика, и опасность их воздействия возрастает при попадании внутрь организма с водой, пищей, вдыхаемым воздухом или через открытую рану, так как они могут повредить те органы и ткани, в которые проникли.
Бета-частицы обладают большей, чем альфа-частицы, проникающей, но меньшей ионизирующей способностью; их пробег в воздухе достигает 15м, а в тканях организма - 1-2 см.
Гамма-излучение распространяется со скоростью света, обладает наибольшей глубиной проникновения, и ослабить его может только толстая свинцовая или бетонная стена. Проходя через материю, радиоактивное излучение вступает с ней в реакцию, теряя свою энергию. При этом чем выше энергия радиоактивного излучения, тем больше его повреждающая способность.
Величина энергии излучения, поглощенная телом либо веществом, называется поглощенной дозой. В качестве единицы измерения поглощенной дозы излучения в системе СИ принят Грей (Гр). На практике используется внесистемная единица - рад (1 рад = 0,01 Гр). Однако при равной поглощенной дозе альфа-частицы дают значительно больший повреждающий эффект, чем гамма-излучение. Поэтому для оценки повреждающего действия различных видов ионизирующего излучения на биологические объекты применяют специальную единицу измерения - бэр (биологический эквивалент рентгена). В системе СИ единицей этой эквивалентной дозы является зиверт (1 Зв = 100 бэр).
Для оценки радиационной обстановки на местности, в рабочем или жилом помещении, обусловленной воздействием рентгеновского или гамма-излучения, используют экспозиционную дозу облучения. За единицу экспозиционной дозы в системе СИ принят кулон на килограмм (Кл/кг). На практике она чаще всего измеряется в рентгенах (Р). Экспозиционная доза в рентгенах достаточно точно характеризует потенциальную опасность воздействия ионизирующих излучений при общем и равномерном облучении тела человека. Экспозиционной дозе в 1Р соответствует поглощенная доза, примерно равная 0,95 рад.
При прочих одинаковых условиях доза ионизирующего излучения тем больше, чем длительнее облучение, т.е. доза накапливается со временем. Доза, соотнесенная с единицей времени, называется мощностью дозы, или уровнем радиации. Так, если уровень радиации на местности составляет 1 Р/ч, это означает, что за 1 час нахождения в данной местности человек получит дозу в 1 Р.
Рентген является весьма крупной единицей измерения, и уровни радиации обычно выражаются в долях рентгена - тысячных (миллирентген в час - мР/ч) и миллионных (микрорентген в час - мкР/ч).
Для обнаружения ионизирующих излучений, измерения их энергии и других свойств применяются дозиметрические приборы: радиометры и дозиметры.
Радиометр - это прибор, предназначенный для определения количества радиоактивных веществ (радионуклидов) или потока излучений.