Федерико Гарсиа Лорка. Крайне мало в списках лауреатов выдающихся советских и российских ученых. Однако при всех недостатках Нобелевская премия остается самой престижной в мире. Очередная книга
Вид материала | Книга |
СодержаниеГендрик лоренц Анри беккерель |
- Нобелевская премия по экономике это премия Банка Швеции в экономических науках памяти, 206.19kb.
- Задачи : приобщить к основам исследовательской деятельности; сформировать навыки работы, 52.88kb.
- Нобелевская премия по экономике, 127.06kb.
- Россияне – лауреаты, 74.38kb.
- Р оссияне – лауреаты Нобелевской премии по литературе, 201.58kb.
- Нобелевская премия по литературе, 338.72kb.
- Нобелевская премия по экономике 2009, 45.24kb.
- 9 июля 1894 г. – 8 апреля 1984 г. Нобелевская премия по физике, 1978 г совместно, 166.52kb.
- О конкурсах на соискание золотых медалей и премий имени выдающихся ученых, проводимых, 115.27kb.
- Первая жизнь мвф закончилась в начале 70-ых годов, когда Бреттон-Вудсская система фактически, 154.5kb.
ГЕНДРИК ЛОРЕНЦ
<Более правильное написание имени — Хендрик Лорентц (был Людвиг Лоренц — датский физик и современник Лорентца). — Прим. авт.>
(1853–1928)
«Его блестящий ум указал нам путь от теории Максвелла к достижениям физики наших дней. Именно он заложил краеугольные камни этой физики, создал ее методы… Образ и труды его будут служить на благо и просвещение еще многих поколений», — сказал Эйнштейн над прахом Лоренца. Стиль работы Лоренца — брать глубоко и стремиться к полной завершенности — послужит, по словам Макса Планка, образцом и для будущих поколений. «Его труды не перестали быть захватывающе интересными… он оставил после себя огромное наследие — истинное завершение классической физики», — оценивал вклад Лоренца Луи де Бройль. Таким был и таким остается перед потомками Гендрик Лоренц — этот «великий классик теоретической физики».
Гендрик Антон Лоренц родился 18 июля 1853 года в голландском городе Арнеме. Шести лет он пошел в школу. В 1866 году, окончив школу лучшим учеником, Гендрик поступил в третий класс высшей гражданской школы, примерно соответствующей гимназии. Его любимыми предметами стали физика и математика, иностранные языки. Для изучения французского и немецкого языков Лоренц ходил в церкви и слушал на этих языках проповеди, хотя в бога не верил с детства.
В 1870 году он поступил в Лейденский университет. С большим интересом Гендрик слушал лекции университетских профессоров, хотя его судьбу как ученого, видимо, в большей мере определило чтение трудов Максвелла, очень трудных для понимания и названных им в связи с этим «интеллектуальными джунглями». Но ключ к ним, по словам Лоренца, ему помогли подобрать статьи Гельмгольца, Френеля и Фарадея. В 1871 году Гендрик с отличием сдал экзамены и получил степень магистра, но в 1872 году покинул Лейденский университет, чтобы самостоятельно готовить докторскую диссертацию. Он возвратился в Арнем и начал работать учителем вечерней школы. Работа ему очень нравится, и вскоре Лоренц стал хорошим педагогом. Дома он создал небольшую лабораторию, где продолжал усиленно изучать труды Максвелла и Френеля. «Мое восхищение и уважение переплелось с любовью и привязанностью; как велика была радость, которую я испытал, когда смог прочесть самого Френеля», — вспоминал Лоренц. Он становится ярым сторонником электромагнитной теории Максвелла: «Его "Трактат об электричестве и магнетизме" произвел на меня, пожалуй, одно из самых сильных впечатлений в жизни; толкование света как электромагнитного явления по своей смелости превзошло все, что я до сих пор знал».
В 1875 году Лоренц блестяще защитил докторскую диссертацию и в 1878 году становится профессором специально для него учрежденной кафедры теоретической физики (одной из первых в Европе) Лейденского университета. В 1881 году он был избран членом Королевской академии наук в Амстердаме. В том же году Лоренц женился на Алетте Катерине Кайзер, племяннице профессора астрономии Кайзера. У супругов Лоренц родилось четверо детей (один из них умер в младенческом возрасте).
Уже в докторской диссертации «Об отражении и преломлении лучей света» Лоренц пытался обосновать изменение в скорости распространения света в среде влиянием наэлектризованных частичек тела. Под действием световой волны заряды молекул приходят в колебательное движение и становятся источниками вторичных электромагнитных волн. Эти волны, интерферируя с первичными, и обусловливают преломление и отражение света. Здесь уже намечены те идеи, которые приведут к созданию электронной теории дисперсии света.
В следующей статье — «О соотношении между скоростью распространения света и плотностью и составом среды», опубликованной в 1878 году, Лоренц вывел знаменитое соотношение между показателем преломления и плотностью среды.
Как пишет М. Планк: «Если диэлектрическая постоянная прозрачного тела зависит от поляризуемости его молекул, то она всегда должна быть больше, чем у свободного эфира, что согласуется с действительностью. Указанное выше затруднение для теории Максвелла — то, что показатель преломления тела, определяемый его диэлектрической постоянной, изменяется с длиной волны, в лоренцовой теории устраняется, благодаря тому, что, согласно Лоренцу, диэлектрическая постоянная дает только показатель преломления для бесконечно длинных волн. Для волн конечной длины влияние проходящей через тело электромагнитной волны на движение содержащихся в теле, колеблющихся возле своих положений равновесия электронов существенно меняется с длиной волны и обусловливает, таким образом, явления нормальной и аномальной дисперсии в соответствии с тем, насколько частота волны отклоняется от собственной частоты электронов. И для зависимости показателя преломления от объемной плотности тела Лоренц смог вывести удовлетворительно согласующуюся с экспериментальными данным формулу, исходя из оценки числа поляризованных молекул в единице объема.
По случайному совпадению ту же формулу одновременно нашел его почти однофамилец, датский физик Людвиг Валентин Лоренц, и поэтому формула названа двумя именами: формула Лоренца—Лоренца».
В 1892 году Лоренц выступил с большой работой «Электромагнитная теория Максвелла и ее приложение к движущимся телам». В этой работе очерчены основные контуры электронной теории. Мир состоит из вещества и эфира, причем Лоренц называет веществом «все то, что может принимать участие в электрических токах, электрических смещениях и электромагнитных движениях». «Все весомые тела состоят из множества положительно и отрицательно заряженных частиц, и электрические явления порождаются смещением этих частиц».
Лоренц получил уравнение для определения силы, с которой электрическое поле действует на движущийся заряд. Лоренц сделал фундаментальное предположение — эфир в движении вещества участия не принимает (гипотеза неподвижного эфира). (Это предположение прямо противоположно гипотезе Герца о полностью увлекаемом движущимися телами эфире.)
В заметке 1892 года «Относительное движение Земли и эфира» ученый описывает единственный, по его мнению, способ согласовать результат опыта с теорией Френеля, т.е. с теорией неподвижного эфира. Этот способ состоит в предположении о сокращении размеров тел в направлении их движения (сокращение Лоренца—Фитцджеральда).
В 1895 году вышла фундаментальная работа Лоренца «Опыт теории электрических и оптических явлений в движущихся телах». В этой работе Лоренц дал систематическое изложение своей электронной теории. Правда, слово «электрон» в ней еще не встречается, хотя элементарное количество электричества было уже названо этим именем. Ученый просто говорит о заряженных положительно или отрицательно частичках материи — ионах и свою теорию соответственно называет «ионной теорией». «Я принимаю, — пишет Лоренц, — что во всех телах находятся маленькие заряженные электричеством материальные частицы, и что все электрические процессы основаны на конфигурации и движении этих "ионов"». Лоренц указывает, что такое представление общепринято для явлений в электролитах и что последние исследования электрических разрядов показывают, что «в электропроводности газов мы имеем дело с конвекцией ионов».
Другое предположение Лоренца заключается в том, что эфир не принимает участия в движении этих частиц и, следовательно, материальных тел, он неподвижен. Как отмечает М. Планк: «Наиболее характерны для лоренцовой теории покоящегося светового эфира вытекающие из нее уравнения распространения света в движущихся телах. Здесь эта теория на деле показала свое превосходство над теорией Максвелла—Герца, так как она непосредственно дает согласующееся с опытом выражение для френелевского коэффициента и так как она вообще в состоянии правильно учесть все эффекты, вызываемые движением тел, по крайней мере, пока отношение скорости тела к скорости света входит в формулу по существу только в первой степени».
Лоренц стал развивать идеи, изложенные им в «Опыте теории электрических и оптических явлений в движущихся телах», совершенствуя и углубляя свою теорию. В 1899 году он выступил со статьей «Упрощенная теория электрических и оптических явлений в движущихся телах», в которой упростил теорию, данную им в «Опыте».
В 1900 году на Международном конгрессе физиков в Париже Лоренц выступил с докладом о магнитооптических явлениях. Его друзьями стали Больцман, Вин, Пуанкаре, Рентген, Планк и другие знаменитые физики.
В 1902 году Лоренц и его ученик Питер Зееман удостоены Нобелевской премии «в знак признания выдающегося вклада, который они внесли своими исследованиями влияния магнетизма на излучения».
«Наиболее значительным вкладом в дальнейшее развитие электромагнитной теории света мы обязаны профессору Лоренцу, — заявил на церемонии вручения премии Я. Теель из Шведской королевской академии наук. — Если теория Максвелла свободна от каких бы то ни было допущений атомистического характера, то Лоренц начинает с гипотезы о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов».
В своей речи при вручении премии ученый сказал: «…Мы надеемся, что электронная гипотеза, поскольку она принята в различных разделах физики, ведет к общей теории, которая охватит многие области физики и химии. Возможно, что на этом длинном пути сама она полностью перестроится».
В 1904 году он выступил с основополагающей статьей «Электромагнитные явления в системе, движущейся со скоростью, меньшей скорости света». Лоренц вывел формулы, связывающие между собой пространственные координаты и моменты времени в двух различных инерциальных системах отчета (преобразования Лоренца). Ученому удалось получить формулу зависимости массы электрона от скорости.
В 1912 году, переиздавая эту работу, в примечаниях он признал, что ему не удалось полностью совместить свою теорию с принципом относительности. «С этим обстоятельством, — писал Лоренц, — связана беспомощность некоторых дальнейших рассуждений в этой работе».
В 1911 году в Брюсселе состоялся I Международный Сольвеевский конгресс физиков, посвященный проблеме «Излучение и кванты». В его работе участвовали двадцать три физика, председательствовал Лоренц. «Нас не покидает чувство, что мы находимся в тупике; старые теории оказываются все менее способными проникнуть в тьму, окружающую нас со всех сторон», — сказал он во вступительном слове. Он ставит перед физиками задачу: создать новую механику: «Мы будем очень счастливы, если нам удастся хоть немного приблизиться к той будущей механике, о которой идет речь».
В 1912 году Лоренц ушел на должность экстраординарного профессора кафедры и предложил своим преемником жившего тогда в России физика Пауля Эренфеста. В 1913 году Лоренц занял должность директора физического кабинета Тейлоровского музея в Харлеме.
М. Планк вспоминал: «Те из нас, кому выпадала удача в последние годы, по тому или иному поводу, встречаться с Лоренцом, отчетливо представляют себе, вспоминая прошлое, его облик: невысокую, но пропорциональную фигуру, выразительный, выступающий вперед лоб, светлые глаза, которые ясно говорили об остроте проницательного ума и вместе с тем излучали мягкий, покоряющий свет чистой, сердечной доброты, приветливость в сочетании с чувством собственного достоинства, отличавшую его обхождение и беседу, его необычайно разносторонние интересы и его поразительную память на большое и малое, его отзывчивый и симпатичный юмор и, наконец, как главное, внушавшую уважение просветленную гармоничность всего его существа — правдивое отображение его отношения к своей науке и к своим спутникам жизни».
Обширные знания и опыт ученого, охватывавшие все области физики, в сочетании с его умением обходиться с людьми и решать деловые вопросы, делали его наиболее желанным посредником при научных дискуссиях во время физических конференций и съездов. На каждом международном физическом конгрессе последних лет Лоренц заранее предназначался в почетные президенты. Так было и на V, последнем для него, Сольвеевском конгрессе по проблеме «Электроны, фотоны и квантовая механика» в 1927 году. А 4 февраля 1928 года Лоренца не стало.
АНРИ БЕККЕРЕЛЬ
(1852–1908)
Антуан Анри Беккерель родился 15 декабря 1852 года в семье потомственных ученых. Его отец Александр Эдмонд Беккерель был профессором физики и руководителем Национального музея естественной истории. Как и дед Анри, он работал в области фосфоресценции и одновременно занимался вопросами фотографии.
Поскольку мальчик рос в семье крупных физиков, то атмосфера научного поиска не могла не оказать влияния на формирование его интеллекта. В скромном домике была настоящая физическая лаборатория. Сюда часто приходил Анри и с большим интересом и восхищением следил за опытами отца.
Когда мальчик подрос, его определили в лицей Луи Леграна. По окончании лицея, в 1872 году Анри поступил в Политехническую школу. Здесь он начал самостоятельные научные исследования.
Закончив школу, Анри поступил в Институт путей сообщения, где три года работал инженером. Неудачно сложилась его личная жизнь. Беккерель женился на Люси Жамен, дочери профессора-физика, но Люси вскоре умерла, оставив его с сыном Жаном. Анри с трудом пережил этот тяжелый удар. Но жизнь брала свое, и он возвратился к научной работе.
Беккерелю принадлежат многочисленные труды в самых разнообразных областях физики — оптики, электричества, магнетизма, фотохимии, метеорологии, электрохимии, фосфоресценции. Однако наиболее значительные работы ученого связаны в основном с двумя большими разделами физики — магнитооптикой и фосфоресценцией.
В раннем периоде ученый уделял основное внимание магнитооптике. Свой первый трактат о действии магнитного поля на электрическую искру в «Журналь де физик» Беккерель опубликовал еще в 1875 году. Она сразу привлекла к себе внимание коллег. В 1878–1880 годах молодой ученый показал, что газы обладают такой же способностью вращения плоскости поляризации, как жидкости и твердые вещества.
В 1878 году, после смерти деда, Анри стал ассистентом в Музее естественной истории и работал под руководством своего отца. В этот период молодой ученый начал изучать магнитные свойства различных веществ. Он опубликовал интересные данные по никелю и кобальту, в которых показывает, что покрытое никелем железо проявляет магнитные свойства только после нагревания до красного каления.
Из сравнения магнитных свойств кислорода и озона Беккерель пришел к выводу, что последний обладает более ярко выраженными магнитными свойствами, чем кислород.
Вместе с отцом Анри провел многочисленные опыты по измерению температуры магмы.
15 марта 1888 года Беккерель представил в Сорбонну свою докторскую диссертацию. Комиссия Сорбонны с удовлетворением отметила, что это настоящий зрелый ученый. Пожалуй, лучше всего молодого ученого охарактеризовал его друг и коллега Анри Деландр: «Это был интуитив, Анри превосходно чувствовал явление». Эти свойства и позволили Беккерелю стать чрезвычайно точным экспериментатором.
27 мая 1889 года ученого избрали в Академию наук, и он занимает должность непременного секретаря физического отделения.
В 1892 году Беккерель стал профессором Национального музея естественной истории. Кончилось и его более чем четырнадцатилетнее вдовство, он женился на мадемуазель Лорье. Супруги оставили старую квартиру в здании Музея и переехали на бульвар Сен-Жермен. В 1895 году Беккерель стал профессором Политехнической школы.
А еще через год открытие рентгеновских лучей взбудоражило мысль ученых, уже было решивших, что здание физики построено и в природе больше нет ничего не известного человеку. Среди них был и Беккерель.
В своем докладе на конгрессе ученый указывал на то, что маловероятно, чтобы рентгеновские лучи могли существовать в природе только в тех сложных условиях, в каких они получаются в опытах Рентгена.
Беккерель, близко знакомый с исследованиями своего отца по люминесценции, обратил внимание на тот факт, что катодные лучи в опытах Рентгена вызывали при ударе одновременно и люминесценцию стекла, и невидимые X-лучи. Это привело его к идее, что всякая люминесценция сопровождается одновременно испусканием рентгеновских лучей. Эту идею впервые высказал А. Пуанкаре.
Несколько дней Беккерель обдумывал намеченный им эксперимент, затем выбрал двойную сернокислую соль урана и калия, спрессованную в небольшую «лепешку», положил соль на фотопластинку, спрятанную от света в черную бумагу, и выставил пластинку с солью на солнце. Под влиянием солнечных лучей двойная соль стала ярко светиться, но на защищенную фотопластинку это свечение не могло попасть. Беккерель едва дождался момента, когда фотопластинку можно было достать из проявителя. На пластинке явственно проступало изображение «лепешки». Неужели все верно, и соль в ответ на облучение солнечными лучами испускает не только свет, но и рентгеновские лучи?
Беккерель проверил себя еще и еще раз. 26 февраля 1896 года настали пасмурные дни, и Беккерель с сожалением прячет приготовленную к эксперименту фотопластинку с солью в стол. Между «лепешкой» соли и фотопластинкой на этот раз он положил маленький медный крестик, чтобы проверить, пройдут ли сквозь него рентгеновские лучи.
Вероятно, немногие открытия в науке обязаны своим происхождением плохой погоде. Если бы конец февраля 1896 года в Париже был солнечный, не было бы обнаружено одно из самых важных научных явлений, разгадка которого привела к перевороту в современной физике.
1 марта 1896 года Беккерель, так и не дождавшись появления солнца на небе, вынул из ящика ту самую фотопластинку, на которой несколько дней пролежали крестик и соль, и на всякий случай проявил ее. Каково же было его удивление, когда он увидел на проявленной фотопластинке четкое изображение и крестика, и лепешки с солью! Значит, солнце и флуоресценция здесь ни при чем?
Как первоклассный исследователь, Беккерель не поколебался подвергнуть серьезной ревизии свою теорию и начал исследовать действие солей урана на пластинку в темноте. Так обнаружилось, и это Беккерель доказал последовательными опытами, что уран и его соединение непрерывно излучают лучи, действующие на фотографическую пластинку и, как показал Беккерель, способные также разряжать электроскоп, т.е. создавать ионизацию.
Это открытие вызвало сенсацию. Особенно поражала способность урана излучать спонтанно, без всякого внешнего воздействия. Рамзай рассказывал, что когда осенью 1896 года он вместе с лордом Кельвином (В. Томсоном) и Д. Стоксом посетил лабораторию Беккереля, то «эти знаменитые физики недоумевали, откуда мог бы взяться неисчерпаемый запас энергии в солях урана. Лорд Кельвин склонялся к предположению, что уран служит своего рода западней, которая улавливает ничем другим не обнаруживаемую лучистую энергию, доходящую до нас через пространство, и превращает ее в такую форму, в виде которой она делается способной производить химические действия».
Первое в мире сообщение о существовании радиоактивности было сделано Беккерелем на заседании Парижской академии наук 24 февраля 1896 года. Открытие явления радиоактивности Беккерелем можно отнести к числу наиболее выдающихся открытий современной науки. Именно благодаря ему человек смог значительно углубить свои познания в области структуры и свойств материи, понять закономерности многих процессов во Вселенной, решить проблему овладения ядерной энергией. Учение о радиоактивности оказало колоссальное влияние на развитие науки, причем за сравнительно небольшой промежуток времени.
Изучая свойства новых лучей, Беккерель попытался объяснить их природу. Однако он не мог прийти к четким выводам и долгое время придерживался ошибочной точки зрения, согласно которой радиоактивность, возможно, является формой длительной фосфоресценции.
Вскоре в исследование нового явления включились другие ученые, и, прежде всего, супруги Пьер и Мария Кюри. Вместе с ними в 1903 году Беккерель получил Нобелевскую премию. Супруги Кюри не смогли в то время приехать в Стокгольм: здоровье их было слишком слабым, и Анри Беккерель один присутствовал на этой церемонии.
Рассказывает К.А. Капустинская:
«Музыка, множество цветов около бюста Нобеля создавало необыкновенно праздничную обстановку. Шведский король Оскар собственноручно вручил премию Анри Беккерелю, а премию Марии и Пьеру Кюри их представителю — министру Франции.
Французский ученый встретил в Стокгольме чрезвычайно радушный прием. На следующий день после вручения премии король Оскар дал в честь лауреатов Франции завтрак. Профессор Хассельберг, член Нобелевского комитета физиков, попросил Беккереля прочитать лекцию. Это был настоящий экспромт. Беккерель выступал у маленького рабочего столика, принесенного из соседнего кабинета. Слушателей становилось все больше и больше, и, в конце концов, они окружили Беккереля тесным кольцом. Все старались не пропустить ни одного слова ученого, лучше понять его мысли. Беккерель вспоминал впоследствии, как взволновал его этот живой интерес к радиоактивности. Он высоко ценил близость и научные контакты, которые непосредственно устанавливались между учеными во время таких встреч».
В своей речи 11 декабря 1903 года «О новом свойстве материи, называемом радиоактивностью» ученый подвел своеобразный итог своим работам по радиоактивности. Он сумел нарисовать отчетливую картину состояния достижений в новой отрасли физики:
«В итоге вполне определенными на сегодняшний день радиоактивными веществами можно считать уран, торий, радий, полоний; к ним можно прибавить актиний, хотя об этом веществе опубликовано еще очень мало данных. Нужно отнестись с осторожностью к различным другим веществам, полученным г-ном Гизелем, а также к продуктам висмута или активного теллурия, полученного г-ном Марквальдом при помощи электролиза.
Уран испускает бета-лучи и гамма-лучи; он не выделяет эманации в воздух, но активация, которую он производит в растворах, может быть приписана действию некоторой эманации.
Торий и радий испускают альфа, бета и гамма-лучи и эманацию, активирующую газы.
Полоний не выделяет бета-лучей. Он испускает альфа и гамма-лучи, но теряет со временем свою активность.
Актиний, по-видимому, имеет замечательную активирующую способность.
Наряду с ураном и торием один только радий обладает признаками, позволяющими рассматривать его как простое тело, свойства которого близки к свойствам бария, хотя и отличны от них. Следует, однако, заметить, что это вещество не содержится даже в виде следов в обычных рудах бария, а встречается лишь в урановой руде, где сопутствует барию. Этот факт имеет, может быть, особое значение, которое выяснится для нас впоследствии».
По возвращении из Стокгольма ученый снова с увлечением принимается за свои исследования. Беккерель кажется полным сил и строит новые творческие планы, и лишь близкие знают, что усталость дает о себе знать все чаще и чаще.
29 июня 1908 года состоялось годичное собрание Академии наук, где ученого абсолютным большинством голосов избирают непременным секретарем физического отделения, а 25 августа 1908 года Анри Беккерель неожиданно умер.
Кончина Анри Беккереля не прервала существование этой славной династии — дело отца продолжил сын Жан.