Лекция Возникновение и развитие жизни на Земле Теории возникновения жизни на Земле
Вид материала | Лекция |
СодержаниеТеория биохимической эволюции. Эволюция пробионтов. Теория симбиогенеза Развитие жизни на Земле Архейская эра. Протерозойская эра. Палеозойская эра. Мезозойская эра. Кайнозойская эра. |
- Практическая работа «Возникновение и развитие жизни на Земле», 85.3kb.
- Тема: Возникновение жизни на Земле, 86.38kb.
- Тема урока: Гипотезы о возникновении жизни на Земле. Цель, 231.21kb.
- Презентация по биологии в 9 классе «Взгляды и гипотезы о происхождении жизни на Земле», 153.67kb.
- «Возникновение и развитие жизни на Земле», 47.03kb.
- Тема Возникновение жизни на земле, 40.78kb.
- Консультации для педагогов по теме «Возникновение жизни нам земле», 109.88kb.
- Г. В. Войткевич Возникновение и развитие жизни на Земле Ответственный редактор доктор, 526.69kb.
- Возникновение и начальные этапы развития жизни на Земле, 262.53kb.
- Е философских предпосылок, определивших возникновение и развитие различных дисциплинарных, 6956.59kb.
Лекция 3. Возникновение и развитие жизни на Земле
Теории возникновения жизни на Земле
Как возникла жизнь на Земле? Все теории возникновения жизни вообще и в частности на Земле можно разделить на две группы: одни утверждают, что живые организмы созданы высшей силой, другие — что жизнь появилась естественным путем.
Креационисты верят в то, что жизнь создана высшей силой, Творцом; сторонники теории самозарождения (витализма) утверждали, что возможно самозарождение живых организмов. Теория панспермии предполагает, что жизнь на Землю попала из космоса, споры микроорганизмов распространяются в космическом пространстве и могли попасть на древнюю Землю. Теория биохимической эволюции показывает возможный путь зарождения жизни на Земле естественным путем, когда химическая эволюция создает предпосылки для появления живых организмов при наличии определенных условий.
Теория самозарождения. Эта теория была господствующей в средние века. Даже философы древней Греции (Аристотель и другие) утверждали, что лягушки родятся из ила, черви и насекомые — заводятся сами собой в почве. Ученые того времени предлагали рецепты, с помощью которых можно было получить животных или даже маленьких человечков. Алхимик Ван Гельмонт (17 век) предлагал простой рецепт зарождения мышей: "Положи в горшок зерна, заткни его грязной рубашкой и жди". Через двадцать один день из испарений зерна и грязной рубашки зародятся мыши.
Парацельс написал рецепт, с помощью которого можно было изготовить маленького человечка — гомункулуса. Зарождение происходит с помощью vis vitalis — жизненной силы, которая заселяет питательные вещества.
1665 год. Франческо Реди (врач) доказал что мухи не могут зарождаться на мясе, как считали ранее. Он провел опыт с сосудами, в которые положил мясо, рыбу, змею. Часть сосудов он оставил открытыми, часть закрыл кисеей (марлей). В открытых сосудах мухи отложили яички и там появились личинки мух, в закрытых сосудах личинок не было.
Антони Ван Левенгук открыл мир микроорганизмов. Стоило положить клочок сена в воду, как уже через несколько дней в настое было огромное количество инфузорий и еще более мелких существ. Они появились из неживого, утверждали некоторые ученые, другие считали, что живое появляется только от живого.
И
Рис 357. Колба Спалланцани и Тереховского (слева) и колба Пастера (справа).
тальянец Спалланцани и русский ученый Тереховский пытались доказать, что "у микробов есть родители", для чего они длительное время кипятили различные настои и затем запаивали стеклянные колбы (рис. 357). При этом микробы не появлялись, но сторонники теории самозарождения считали, что длительное кипячение убивает жизненную силу, которая вновь может попасть в сосуд только с воздухом.
Парижская Академия наук назначила премию за решение этого вопроса, и в 1862 году Луи Пастер сумел доказать, что самозарождения микроорганизмов не происходит. Для этого он использовал колбу с длинным изогнутым горлом и кипятил настои при температуре 120 градусов. При этом погибали микробы и их споры, при остывании воздух проходил в колбу, а вместе с ним и микроорганизмы, но они оседали на стенках изогнутого горла колбы и в настой не попадали.
Так было окончательно доказано, что самозарождение живых организмов невозможно, все живое происходит от живого. Но в этом случае как же появились живые организмы на Земле? Или они созданы "высшей силой" или занесены из космического пространства.
Теория панспермии. Согласно этой теории живые организмы попали на Землю из космоса. В самом деле, космическое тело, попав в мировой океан, могло занести споры микроорганизмов на нашу планету. Есть ряд сообщений о том, что в метеоритах найдены примитивные формы жизни, но эти сообщения на сегодняшний день не кажутся ученым убедительными. И, самое главное, эта гипотеза не дает ответ на главный вопрос — как же все таки из неживого появилось живое.
Теория биохимической эволюции.
Для ответа на этот вопрос очень продуктивной оказалась гипотеза советского академика А.И.Опарина. Возраст Земли составляет 5 — 7 млрд. лет. Все планеты проходят стадию раскаленного тела, температура на поверхности Земли в это время была более 4000ºС. Когда температура снизилась и стала меньше 100ºС, вода, находившаяся в первичной атмосфере Земли образовала мировой океан. В первичной атмосфере не было кислорода, атмосфера была "восстановительной". В ней были пары воды, аммиак, сероводород, метан, двуокись углерода, водород.
В 1924 году А.И.Опарин предположил, что появлению живых организмов предшествует абиогенное образование в атмосфере и океане органических соединений за счет энергии мощных грозовых разрядов, жесткого ультрафиолетового и радиоактивного излучения.
Н
Рис. 358. Установка Стенли Миллера, с помощью которой был осуществлен абиогенный синтез органических веществ.
1 — газовая камера; 2 — водяное охлаждение; 3 — отстойник; 4 — кипящая вода.
акопление органических веществ в первичном океане стало предпосылкой для появления пробионтов — первых живых организмов Земли. Решающую роль в образовании пробионтов А.И.Опарин отводил белкам, которые гидратируются, сливаются в капли и образуют коацерваты — коллоидные сгустки органических веществ. Коацерваты способны накапливать различные соединения, в том числе и катализаторы, между ними происходил естественный отбор, наиболее устойчивые сохранялись. В 1953 году американский ученый С.Миллер смоделировал условия первобытной Земли, поместив в газовую камеру газы первичной атмосферы и за счет энергии электрических разрядов в эксперименте осуществил абиогенный синтез некоторых аминокислот, азотистых основания, сахара рибозы, мочевины, молочной кислоты за счет энергии электрических разрядов (рис. 358).
Отечественные ученые А.Г.Пасынский и Т.Е.Павловская получили сходные результаты с помощью энергии ультрафиолетовых лучей. Таким образом экспериментально было доказан абиогенный синтез всех важнейших биологических мономеров: аминокислот, азотистых оснований, сахаров, жирных кислот который происходил на первом этапе зарождения жизни на Земле.
Вторым этапом был синтез биополимеров. Американские ученые С.Фокс и К.Дозе доказали возможность образования полипептидов в условиях древней Земли. Экспериментально были получены рибонуклеотиды и олигорибонуклеотиды. Происходит образование коацерватов, молекулы органических веществ гидратируются взаимодействуя с молекулами воды, слипаются вместе, захватывают различные вещества, в них образуются катализаторы, придающие им определенную устойчивость. Происходит "естественный отбор" на уровне коацерватов. Но это еще не живые организмы, отсутствует важнейшее свойство, характерное для живых организмов — воспроизведение себе подобных.
На третьем этапе появилась способность к взаимодействию белков и нуклеиновых кислот, появляется самовоспроизведение на основе матричного синтеза, сначала самовоспроизведение РНК, затем ДНК.
Американский биохимик Т.Чек открывает рибозимы — молекулы РНК, обладающие каталитической активностью. Была доказана возможность спонтанного образования на матричных РНК РНК-копий. Миллионы лет шла эволюция на уровне молекул РНК, молекулы РНК, которые придают устойчивость коацерватам и способны к самокопированию — размножаются, за счет мутационного процесса происходит их изменение и естественный отбор сохраняет наиболее удачные полирибонуклеотиды. Затем происходит взаимодействие РНК с определенными аминокислотами, появляются РНК, кодирующие полезные для себя полипептиды, так появился белковый синтез, контролируемый РНК. За счет соединения РНК, кодирующих различные полипептиды, происходит образование крупных РНК, состоящих из нескольких генов.
В дальнейшем преимущества получают ДНК: их двухцепочечное строение обеспечивает более точную репликацию и репарацию. Появляются коацерваты, имеющие наружную мембрану и способные к саморегуляции и самовоспроизведению. Это привело к появлению первых клеток, к появлению пробионтов.
Эволюция пробионтов. Теория симбиогенеза
Первые организмы, появившиеся 3,0 — 3,5 млрд. лет назад, жили в бескислородных условиях, были анаэробными гетеротрофами. Они использовали органические вещества абиогенного происхождения в качестве питательных веществ, энергию получали за счет бескислородного окисления и брожения. До настоящего времени сохранился анаэробный путь использования глюкозы — гликолиз, завершающийся образованием молочной кислоты и образованием на моль глюкозы двух моль АТФ.
Замечательным событием в эволюции живого стало появление процесса фотосинтеза, когда для синтеза органических веществ стала использоваться энергия солнечной света. Бактериальный фотосинтез на первых этапах сопровождался расщеплением органических веществ (фотогетеротрофы, используют в качестве источника углерода органические вещества) или сероводорода (первые фотоавтотрофы, используют углекислый газ как источник углерода и Н2S — как источник водорода).
СО2 + 2Н2S + Q → (СН2О) + 2S + Н2О
Появление автотрофного питания (фотоавтотрофного и хемоавтотрофного) привело к образованию органического вещества из неорганического. Исчезает зависимость от органического вещества абиогенного происхождения.
Позже, у синезеленых, появляется фотосистема, способная расщеплять воду и использовать ее молекулы в качестве доноров водорода. Начинается фотолиз воды, при котором происходит выделение кислорода.
СО2 + 2Н2О + Q → (СН2О) + О2 + Н2О
Фотосинтез синезеленых сопровождается накоплением кислорода в атмосфере и образованием озонового экрана. Кислород в атмосфере остановил процесс абиогенного синтеза органических соединений, но привел к появлению энергетически более выгодного процесса — дыхания. Появляются аэробные бактерии, у которых продукты гликолиза подвергаются дальнейшему окислению с помощью кислорода до углекислого газа и воды. И если при гликолизе образуется 2 моль АТФ на моль глюкозы, то при дальнейшем окислении продуктов гликолиза образуется еще 36 моль АТФ.
Симбиоз большой анаэробной клетки (вероятно, относящейся к архебактериям и сохранившей ферменты гликолитического окисления) с аэробными бактериями оказался взаимовыгодным, причем бактерии со временем утратили самостоятельность и превратились в митохондрии (рис. 359).
Потеря самостоятельности связана с утратой части генов, которые перешли в хромосомный аппарат клетки-хозяина. Но все же митохондрии сохранили собственный белоксинтезирующий аппарат и способность к размножению.
Важным этапом в эволюции клетки стало обособление ядра, отделение генетического аппарата клетки от реакций обмена веществ.
Различные способы гетеротрофного питания привели к формированию царства Грибов и царства Животных.
Рис. 359. Гипотетическая схема симбиотического происхождения эукариотической клетки.
Рис. 360. Схема образования основных групп живых
организмов.
Симбиоз с цианобактериями привел к появлению хлоропластов. Хлоропласты так же утратили часть генов и являются полуавтономными органоидами, способными к самовоспроизведению. Их появление привело к развитию по пути с автотрофным типом обмена веществ и обособлению части организмов в царство Растений.
В пользу симбиотического происхождения митохондрий и хлоропластов говорят многие факты. Во-первых, их генетический материал представлен одной кольцевой молекулой ДНК (как и у прокариот), во-вторых, их рибосомы по массе, по строению рРНК и рибосомальных белков близки к таковым у аэробных бактерий и синезеленых. В-третьих, они размножаются как прокариоты и наконец, механизмы белкового синтеза в митохондриях и бактериях чувствительны к одним антибиотикам (стрептомицину), а циклогексимид блокирует синтез белка в цитоплазме. Кроме того, известен один вид амеб, которые не имеют митохондрий и живут в симбиозе с аэробными бактериями, а в клетках некоторых растений обнаружены цианобактерии (синезеленые), сходные по строению с хлоропластами.
Дальнейшая эволюция привела к обособлению и сохранению трех надцарств: архебактерий, эубактерий и эукариот (рис. 360).
Развитие жизни на Земле
Живые организмы появились на Земле около 3,5 млрд. лет назад. Начиная с этого времени историю развития жизни делят на эры и периоды. За 3,5 млрд. лет на Земле образовалось около 2 млн. видов живых организмов, которые делят на три надцарства — архебактерии, эубактерии, эукариоты.
Архейская эра.
Архей — древнейшая жизнь. Продолжалась около 900 млн. лет, от 3500 до 2600 млн. лет. Остатков органической жизни немного. Горные породы архея содержат много графита, считается, что графит образовался из остатков живых организмов. Обнаружены строматолиты — конусообразные известковые образования биогенного происхождения. Живые организмы архея были представлены сначала анаэробными прокариотами, которые использовали в качестве источника энергии готовые органические соединения, синтезированные абиогенно.
Важным ароморфозом было появление хемоавтотрофных бактерий, окисляющих соединения железа и серы – железобактерии и серобактерии. Бактериальное происхождение имеют многие запасы серы, железа, меди, никеля, кобальта. Следующим ароморфозом, было появление процесса фотосинтеза, фотоавтотрофных бактерий. Фотосинтез сначала зеленых и пурпурных бактерий, а затем синезеленых — важнейшие ароморфозы архейской эры. Благодаря цианобактериям в атмосфере начинает появляться кислород.
Протерозойская эра.
Протерозой — эра первичной жизни. Продолжительность от 2600 млн. лет до 570 млн. лет, то есть около 2 млрд. лет. Поверхность планеты представляла собой голую пустыню, жизнь развивалась, в основном, в морях. Для этой самой продолжительной эры характерно образование крупнейших залежей железных руд, образованных за счет деятельности бактерий. В протерозойскую эру произошли основополагающие ароморфозы:
- Важнейшим ароморфозом было появление дыхания – процесса, при котором разрушение органических молекул производится в 19 раз более эффективно, чем брожение. Около 2 млрд. лет назад содержание О2 достигло точки Пастера – около 1% от его содержания в современной атмосфере. Такое количество было достаточным для устойчивого существования аэробных бактерий.
- около 1500 млн. лет назад появляются первые эукариоты, господство прокариот сменяется расцветом эукариотических организмов;
- появились многоклеточные организмы — созданы предпосылки для специализации клеток, увеличения размеров и усложнения организмов;
- возникло половое размножение (комбинативная изменчивость), при котором слияние генетического материала разных особей поставляло материал для естественного отбора;
- важнейшим ароморфозом стало образование двусторонней симметрии у активно передвигающихся организмов.
В эту эру образуются все отделы водорослей, слоевище у многих становится пластинчатым. Для животных того времени характерно отсутствие скелетных образований, конец протерозоя иногда называют "веком медуз". Появляются кольчатые черви, от них произошли моллюски и членистоногие. Количество кислорода в атмосфере достигло 5-6% от современного уровня.
Палеозойская эра.
Палеозой — эра древней жизни, продолжительность которой от 570 до 230 млн. лет. В эту эру в растительном и животном мире происходят значительные ароморфозы, связанные как с жизнью в воде, так и с освоением суши. Подразделяется на шесть периодов: кембрий, ордовик, силурий, девон, карбон, пермь.
Растения кембрия и ордовика населяют моря, представлены всеми отделами водорослей. В силурийском периоде (440 млн. лет назад) в зоне приливов и отливов от зеленых водорослей появляются первые наземные высшие растения — псилофиты (голые растения) (рис. 361). Появление покровных, механических, проводящих тканей были теми ароморфозами, которые помогли выйти растениям в воздушную среду. У псилофитов еще отсутствуют корни, воду и минеральные соли они поглощают с помощью ризоидов. Чешуйки на стебле псилофитов увеличивали поверхность фотосинтеза.
В
Рис. 361. Псилофиты, первые наземные высшие растения.
девоне появляются папоротникообразные — травянистые и древовидные хвощи, плауны, папоротники. Появление корней и листьев обеспечивало достаточное воздушное и минеральное питание разнообразным папоротникообразным. Размножаются папоротникообразные одноклеточными спорами, во влажных местах из них развиваются заростки, формирующие половые клетки. Для оплодотворения нужна вода, из зиготы развивается взрослое растение.
В карбоне устанавливается теплый и влажный тропический климат. Папоротникообразные достигают гигантских размеров — до 40 м в высоту. Каменноугольные леса впоследствии привели к образованию огромных залежей каменного угля. Вместе с тем в карбоне происходят два важнейших ароморфоза, в результате которых появились высшие семенные растения: во-первых, появляется опыление с помощью ветра, когда пыльца с мужскими половыми клетками по воздуху попадает на органы растений, содержащие женские половые клетки, вода для оплодотворения больше не нужна; во-вторых, после оплодотворения образуются семена. Такими растениями были семенные папоротники.
Семенные папоротники дали начало развитию голосеменных растений. В пермском периоде климат стал засушливым и более холодным. Тропические леса остаются у экватора, на остальной территории распространяются голосеменные.
Для животных кембрийского периода характерно разнообразие трилобитов — древнейших членистоногих, в этот период появлеются животные с минерализованным скелетом.
В ордовикском периоде появляются первые хордовые животные, имеющие внутренний скелет, отдаленными потомками которых являются ланцетники и круглоротые — миноги и миксины.
В
Рис. 362. Скелет парного плавника кистеперой рыбы и стегоцефала:
1 — элемент, гомологичный плечевой кости; 2 — элемент, гомологичный лучевой кости; 3 — элемент, гомологичный локтевой кости; 4, 5, 6 — кости запястья; 7 —фаланги пальцев.
силурийских морях появляются иглокожие и бесчелюстные панцирные "рыбы", которые только внешне напоминали настоящих рыб и не имели челюстей. Захват и удержание крупной добычи с помощью такого рта был невозможен. На сушу выходят первые членистоногие — скорпионы и пауки.
В девоне на суше появились насекомые, в морях уже плавали настоящие рыбы — хрящевые (акулы) и рыбы с костным скелетом. В результате мутаций и отбора третья пара жаберных дуг у них превратилась в челюсти, с помощью которых можно было питаться крупной добычей.
Н
Рис. 363. Стегоцефалы.
аиболее интересными среди костистых рыб были двоякодышащие и пресноводные кистеперые, которые имели наряду с жабрами легкие. Теплая вода и обилие растительности пресных водоемов служили предпосылками для развития дополнительных органов дыхания, глоточные карманы двоякодышащих и кистеперых постепенно превращаются в легкие. Пресноводные кистеперые рыбы к тому же имели мощные парные конечности (рис. 362) и были лучше приспособлены к жизни в прибрежном мелководье, от них и произошли стегоцефалы (панцирноголовые земноводные) (рис. 363).
В карбоне на суше появляются крылатые насекомые, некоторые стрекозы в размахе крыльев имели до 70 см. Обилие членистоногих на суше вызвало появление большого количества различных форм древних земноводных (до 6 м в длину).
Дальнейшее освоение суши привело к появлению пресмыкающихся и сопровождалось рядом ароморфозов: увеличивалась поверхность легких, сухая чешуйчатая кожа защищала от испарения, внутреннее оплодотворение и откладывание крупных яиц позволило эмбрионам развиваться на суше.
В пермском периоде изменение климата сопровождалось исчезновением стегоцефалов и расселением пресмыкающихся.
Мезозойская эра.
Мезозой — эра средней жизни, началась 230, закончилась 67 млн. лет назад. Делится на три периода: триас, юра и мел. Растительность первых двух периодов мезозойской эры была представлена голосеменными и папоротникообразными, причем продолжалось вымирание древовидных папоротникообразных. В начале мелового периода (130 млн. лет назад) появляются первые покрытосеменные. Появление цветка и плода — крупные ароморфозы, которые привели к появлению покрытосеменных. С помощью цветка облегчался процесс опыления, лучше сохранялись семязачатки, расположенные внутри завязи пестика. Стенки околоплодника защищали семена и способствовали их распространению.
В животном мире мезозойской эры наибольшего распространения достигают насекомые и пресмыкающиеся. В триасе пресмыкающиеся вторично возвращаются в воду, на мелководье обитают плезиозавры, далеко от берега охотятся ихтиозавры, напоминающие современных дельфинов. Появляются первые яйцекладущие млекопитающие, в отличие от пресмыкающихся высокая интенсивность обмена веществ позволяет им поддерживать постоянную температуру тела.
В
Рис. 364. Археоптерикс.
юрском периоде некоторые растительноядные пресмыкающиеся достигают гигантских размеров, появляются и очень крупные хищные динозавры — тиранозавры, длина тела которых достигала 12 метров. Некоторые пресмыкающиеся осваивают воздушное пространство — появляются летающие ящеры (птерозавры). В этом же периоде появляются и первоптицы, археоптерикс (размером с голубя) сохраняет многие признаки пресмыкающихся — его челюсти имеют зубы, из крыла выступают три пальца, хвост состоит из большого числа позвонков (рис. 364).
В начале мелового периода сохраняется господство пресмыкающихся на суше, в воде и в воздухе, некоторые растительноядные пресмыкающиеся достигают массы 50 т. Появляются сумчатые и плацентарные млекопитающие, продолжается параллельная эволюция цветковых растений и насекомых опылителей.
В конце мелового периода климат становится холодным, засушливым. Сокращается площадь, занятая растительностью, вымирают гигантские растительноядные, затем и хищные динозавры. В конце мезозойской эры (70 млн. лет назад) от животных отряда насекомоядные, которые стали вести древесный образ жизни, появились предковые формы приматов.
Кайнозойская эра.
Кайнозой — эра новой жизни. Продолжается 67 млн. лет и делится на два неравных по времени периода — третичный (палеоген и неоген) и четвертичный (антропоген). В первой половине третичного периода (в палеогене) на большей части Земли вновь установился теплый тропический климат, во второй половине (неогене) тропические леса заменяются степями, распространяются однодольные растения. В четвертичном периоде, который продолжается около 1,5 млн. лет в ледниковый период Евразия и Северная Америка четыре раза подвергались оледенениям.
В результате остепнения, происходившего во второй половине третичного периода, часть приматов вынуждена была спуститься на землю и приспосабливаться к жизни на открытых пространствах. Это были предковые формы людей — гоминиды, прямоходящие приматы. Другая часть осталась жить в тропических лесах и стала предками человекообразных обезьян — понгид. В конце третичного периода от гоминид появляются обезьянолюди, питекантропы.
В четвертичном периоде холодный климат привел к уменьшению уровня мирового океана на 60 — 90 м, образовывались и спускались к югу ледники, толщина льда которых достигала десятков метров, вода испарялась, а таять не успевала. Образовались сухопутные мосты между Азией и Северной Америкой, между Европой и Британскими островами. По этим сухопутным мостам происходили миграции животных с континента на континент. Около 40 тыс. лет назад по Берингийскому мосту древние люди ушли из Азии в Северную Америку. В результате похолодания и появления человека, охотившегося на животных, исчезают многие крупные звери: саблезубые тигры, мамонты, шерстистые носороги. Рядом со стоянками древних людей обнаруживаются останки многих десятков мамонтов и других крупных животных. В связи с истреблением крупных животных 10 — 12 тыс. лет назад человек вынужден был от собирательства и охоты перейти к земледелию и скотоводству.
Основные вопросы для повторения
- Возникновение и развитие жизни на Земле
- Каков возраст Земли?
- Какие организмы появились в архейскую эру?
- Какие организмы при фотосинтезе впервые стали выделять кислород в атмосферу?
- Важнейшие ароморфозы архейской эры?
- Растительный мир протерозоя?
- Животный мир протерозоя?
- Временные границы палеозойской эры?
- Периоды палеозойской эры?
- Временные границы мезозойской эры?
- Периоды мезозойской эры?
- Временные границы кайнозойской эры?
- Периоды кайнозойской эры?
- В какую эру и период появились псилофиты?
- От какой группы водорослей произошли псилофиты?
- Какие ароморфозы привели к появлению псилофитов?
- В какую эру и период появились семенные папоротники?
- Какие ароморфозы привели к появлению семенных папоротников?
- В какую эру и период появились цветковые?
- Какие ароморфозы привели к появлению цветковых?
- В какую эру и период появились первые насекомые?
- В какую эру и период появились крылатые насекомые?
- В какую эру и период появились бесчелюстные "рыбы"?
- В какую эру и период появились настоящие рыбы?
- В какую эру и период появились стегоцефалы?
- В какую эру и период появились первые пресмыкающиеся?
- В какую эру и период появились яйцекладущие млекопитающие?
- В какую эру и период появились сумчатые и плацентарные млекопитающие?
- В какую эру и период появились первые птицы?
- Какую эру можно назвать эрой млекопитающих и покрытосеменных?
- В какую эру и период появился человек?
- Какую эру можно назвать эрой медуз?
- Какую эру можно назвать эрой папоротникообразных и земноводных?
- Какую эру можно назвать эрой пресмыкающихся?
- Какую эру можно назвать эрой цветковых и млекопитающих?
- Какой климат в начале и в конце третичного периода?
- Какой климат в четвертичном периоде?
- Какие организмы относятся к империи Доклеточные?
- Какие организмы относятся к надцарству Прокариот?
- Какие организмы относятся к надцарству Эукариот?
- Какие организмы способны фиксировать атмосферный азот?