Перевод с английского под редакцией Я. А. Рубакина ocr козлов М. В
Вид материала | Документы |
- Руководство еврахим / ситак, 1100.7kb.
- Введение в физиологию. (лекция разработана к б. н. О. В. Погадаевой), 292.58kb.
- Слобин Д., Грин Дж. Психолингвистика. Перевод с английского Е. И. Негневицкой/ Под, 3816.7kb.
- Н. М. Макарова Перевод с английского и редакция, 4147.65kb.
- Камера джон гришем перевод с английского Ю. Кирьяка. Ocr tymond Анонс, 6452.48kb.
- Евстратова, К. Виткова Художник обложки В. Королева Подготовка иллюстраций Н. Резников, 2183.64kb.
- Евстратова, К. Виткова Художник обложки В. Королева Подготовка иллюстраций Н. Резников, 2205.08kb.
- Под редакцией А. И. Козлова, Д. В. Лисицына,, 1651.6kb.
- Баринова Анна Юрьевна учитель английского языка Как правильно готовить проект к урок, 42.88kb.
- Галили клайв баркер перевод с английского Е. Болыпелапова и Т. Кадачигова. Перевод, 8625.28kb.
С общей истиной, что развитие всех организмов порождается совокупностью дифференцирований и интеграции, тесно связана другая общая истина, которую физиологи, кажется, не признали еще. При рассмотрении органического мира в его целом, замечается, что, переходя от низших форм к высшим, мы переходим вместе с тем к формам, которые не только характеризуются большим дифференцированием частей, но в то же самое время и большим дифференцированием от окружающей их среды. Истина эта может быть рассмотрена с разных сторон.
Прежде всего она выказывается в строении. Переход от однородного к разнородному заключает в себе возрастающее отличие от мира неорганического. У самых низших простейших (Protozoa), каковы корненожки, мы встречаем однородность, близкую к однородности воздуха, воды или земли; восхождение к организмам все более и более сложного строения есть вместе с тем и восхождение к организмам, представляющим все более и более резкий контраст с бесстройным окружающим.
В форме мы замечаем тот же факт. Общую характеристическую черту неорганических веществ составляет неопределенность формы, то же самое характеризует низшие организмы по отношению к высшим. Говоря вообще, растения менее определенны, нежели животные, и по форме, и по величине, и допускают большие изменения от перемены положения и пищи. Amoeba и подобные им животные не только бесстройны, но и аморфны, у них нет специфической формы, она постоянно меняется. Между организмами, происходящими от соединения организмов, сходных с Amoeba, мы находим некоторую определенность формы, по крайней мере хоть в панцире, другие же, как, например, губки, очень неправильны. В зоофитах и Polyzoa (мшанки) мы видим сложные организмы, у большей части которых рост ничуть не определеннее роста растений. У высших же животных не только форма каждого рода вполне определенна, но даже и особи в каждом виде очень мало отличаются размерами.
Подобное же увеличение контраста заметно и в химическом составе. За немногими исключениями, низшие животные и растительные формы обитают в воде; вода является почти исключительной составной их частью. Высушенные Protophyta и Protozoa обращаются в пыль, а у акалеф (морские крапивы) на фунт воды приходится несколько гранов твердого вещества. Высшие водные растения и животные, обладая большею стойкостью вещества, содержат больше органических элементов и, следовательно, больше разнятся по химическому составу своему от окружающей их среды. Переходя к самым высшим классам организмов - растениям и животным, населяющим сушу, мы заметим, что по химическому составу у них очень мало общего и с землей, на которой они живут, и с воздухом, который их окружает.
То же замечается и в удельном весе. Самые простейшие формы вместе со спорами и почечками высших форм имеют удельный вес, чрезвычайно близкий к удельному весу воды, в которой они плавают. И хотя нельзя сказать, чтобы водяные организмы, обладающие высшим удельным весом, были выше и в других отношениях, однако же мы утверждаем, что высшие порядки, освобожденные от примесей, регулирующих их удельный вес, по удельному весу своему больше отличаются от воды, нежели низшие. В земных организмах контраст чрезвычайно заметен. Деревья и растения, насекомые, пресмыкающиеся, млекопитающие, птицы - все имеют удельный вес, значительно меньший против удельного веса земли и несравненно больший против удельного веса воздуха.
Далее мы видим, что закон этот подтверждается и по отношению к температуре. Растения развивают чрезвычайно малое количество тепла, которое может быть открыто только самыми тонкими опытами, и на практике можно считать их температуру одинаковой с температурой окружающей среды. Температура водяных животных чуть-чуть выше температуры окружающей воды, водяные беспозвоночные превышают ее менее чем на градус, а рыбы превосходят на два, на три градуса, не более, за исключением больших краснокровных рыб, как, например, тунец, температура которого выше температуры воды градусов на десять. Температура насекомых, смотря по степени их деятельности, превышает температуру воздуха от двух до десяти градусов. Температура пресмыкающихся превышает от четырех до пятнадцати градусов температуру окружающей их среды. Между тем как млекопитающие и птицы сохраняют температуру, почти не изменяющуюся от внешних перемен и часто превышающую температуру воздуха на 70,80,90 и даже 100 градусов.
Прогрессивное дифференцирование можно проследить и в большей самоподвижности. Особенно характеристической чертой, отличающей мертвую материю, служит ее инертность, некоторое подобие независимого движения составляет для нас наиболее общий признак жизни. Переходя неопределенную пограничную область между растительным и животным царствами, мы можем грубо определить растения как организмы, которые, обнаруживая вид движения, предполагаемый в явлениях роста, не только лишены силы передвижения с места на место, но, за некоторыми незначительными исключениями, лишены и силы передвигать свои части одну относительно другой, и, таким образом, они менее дифференцированы от неорганического мира, нежели животные. Хотя в микроскопических Protophyta и Protozoa, населяющих воду (споры водорослей, почечки губок и вообще инфузории), мы замечаем передвижение, производимое ресничками, передвижение это, быстрое по отношению к размерам животного, безусловно медленно. Большая часть Coelenterata (кишечнополостных) или прочно прикреплены, или стоят неподвижно и едва ли обладают какой-либо самоподвижностью, кроме той, которая определяется относительным движением частей, между тем как остальные имеют большею частью весьма малую способность двигаться в воде. Высшие водяные беспозвоночные - каракатицы и морские раки, например, - обладают очень значительной силой передвижения, а водные позвоночные, рассматриваемые в совокупности, гораздо более деятельны в своих движениях, нежели остальные обитатели воды. Но, переходя к животным воздушной среды, мы встречаем высшую степень самоподвижности. Летающие насекомые, млекопитающие, птицы передвигаются с быстротой, далеко превосходящей быстроту какого-либо из низших классов животных, и представляют, таким образом, более резкий контраст с неподвижным окружающим.
Итак, при обзоре различных отделов организмов в восходящем порядке мы находим их все более и более отличающимися от безжизненной окружающей их среды по строению, форме, химическому составу, удельному весу, температуре и самоподвижности. Обобщение это, без сомнения, не проявляется всюду с безусловной правильностью. Организмы, представляющие в некоторых отношениях наиболее резкий контраст с окружающим их неорганическим миром, в других отношениях обнаруживают этот контраст в меньшей степени, чем низшие организмы. Млекопитающие, как класс, выше птиц, между тем температура их ниже температуры птиц и сила перемещения слабее. Неподвижная устрица по организации стоит выше свободно плавающей медузы, а холоднокровная и менее разнородная рыба живее в своих движениях, чем теплокровный и более разнородный тихоход. Но признание, что разные стороны, в которых обнаруживался этот возрастающий контраст, имеют различное отношение между собою, не противоречит общей истине. Рассматривая факты в массе, нельзя отрицать, что последовательно высшие степени организмов характеризуются не только большим дифференцированием в частях, но и большим дифференцированием своим от окружающей среды по всем физическим свойствам. Казалось бы, что эта особенность имеет некоторую необходимую связь с высшими жизненными проявлениями. Какая-нибудь низшая слизистая форма, прозрачная и бесцветная настолько, что ее трудно отличить от воды, в которой она плавает, столь же сходна со своею средою в химических, механических, оптических, термических и других свойствах, сколько и в пассивности, с которой подчиняется всем влияниям, приходящим с нею в соприкосновение, между тем как млекопитающие отличаются в этих свойствах от безжизненных предметов настолько же, насколько отличаются деятельностью, с которой встречают окружающие перемены соответственными переменами в самих себе. И в промежутке между этими двумя пределами замечается постоянное отношение этих родов противоположности одного к другому. Следовательно, мы можем сказать, что организм остается пассивным участником происходящих вокруг него изменений пропорционально сходству своему с окружающей средой и что несходство с окружающей средой сопровождается пропорциональным возрастанием силы противодействия этим изменениям.
До сих пор, сообразно установившемуся обыкновению, мы придерживались индуктивного метода, но мы того мнения, что многое может быть сделано как в этом, так и в других отделах биологических исследований применением дедуктивного метода. Обобщения, составляющие в настоящее время физиологическую науку, как общую, так и специальную, достигнуты были a posteriori; но теперь открыты уже некоторые основные данные, от которых мы можем прийти a priori не только к истинам, подтвержденным уже наблюдением и опытом, но и к некоторым другим. Возможность и состоятельность подобного рода априористических заключений будет признана тотчас же по рассмотрении нескольких общеизвестных вопросов.
Химики показали, что необходимое условие жизненной деятельности у животных составляет окисление известных веществ, входящих в состав тела. Кислород, потребный для этого окисления, заключается в окружающей среде в воде или воздухе. Если организм - какое-нибудь мелкое простейшее, то уже одно соприкосновение его наружной поверхности со средой, содержащей кислород, достаточно обеспечивает необходимое ему окисление; если же организм объемист и представляет малую поверхность сравнительно с массою, то таким путем ему нельзя обеспечить сколько-нибудь значительного окисления. Нужно предположить что-нибудь из двух: или этот объемистый организм, получая кислород только через оболочку, должен обладать ничтожной жизненной деятельностью; или же, если он обладает большой жизненной деятельностью, то должна быть какая-нибудь обширная, разветвляющаяся поверхность, внутренняя или наружная, к которой воздух имел бы соответственный доступ, - должен быть дыхательный аппарат. Следовательно, существование легких, жабр или их эквивалентов может быть предсказано a priori во всех деятельных существах какой бы то ни было величины.
То же видно относительно питания. Entozoa, паразиты, живущие во внутренностях других животных и постоянно обливаемые питательными жидкостями, поглощают их в достаточном количестве внешней своей поверхностью и, таким образом, не нуждаются в желудке и могут не иметь его. Все же другие животные, населяющие среды, не заключающие в себе питательных веществ, а только вмещающие кое-где массы пищи, должны иметь приспособления, необходимые для того, чтобы массы этой пищи могли быть употреблены в дело. Очевидно, простое внешнее соприкосновение твердого организма с твердым питательным веществом не может привести к усвоению этого вещества в сколько-нибудь короткий срок, если даже усвоение этим путем и возможно. Чтобы оно совершилось, должно быть и растворяющее и смачивающее действие, и широкая поверхность, приспособленная для удержания и всасывания растворенных продуктов, т. е. должна быть пищеварительная полость. Таким образом, при данных условиях животной жизни присутствие желудка у всех созданий, живущих при этих условиях, может быть выведено дедуктивным путем.
Продолжая нить рассуждений, мы можем вывести присутствие сосудистой системы или чего-нибудь равносильного ей, у всех созданий каких бы то ни было размеров и деятельности. Сравнительно малое инертное животное, как гидра, например, которая состоит почти только из мешочка с двумя стенками (внешним рядом клеточек, образующим кожу, и внутренним, образующим всасывающую поверхность), не нуждается в особых аппаратах, разносящих поглощенную пищу по телу, потому что тело ее немногим отличается от оболочки для пищи, заключающейся в ней. Но когда объем значителен или когда деятельность такова, что требует большой потраты в организме и возобновления потраченного, или же, наконец, когда оба условия совпадают, является очевидная необходимость в системе кровеносных сосудов. Мало того что существует надлежащего размера поверхность, всасывающая пищу и воздух, при отсутствии известных способов передачи поглощенных элементов целому организму или вовсе не будет пользы, или будет слишком мало ее. Ясно, что тут должны быть переносящие каналы. Если, как, например, у медуз, проводники эти состоят просто из разветвленных протоков, расходящихся от желудка к поверхности, то мы можем заключить a priori, что такие организмы сравнительно бездеятельны: пища, распространяющаяся таким образом по организму, не обработана; она только растворена; для поддержания ее в движении нет надлежащего аппарата. Наоборот, когда встречаем организм значительных размеров, обнаруживающий много живости, мы можем заключить a priori, что у него есть аппараты для беспрестанной доставки сконцентрированной пищи и кислорода каждому органу, т. е. есть пульсирующая сосудистая система.
Ясно, следовательно, что, исходя из некоторых известных основных условий жизненной деятельности, мы можем определить главные характеристические черты организованных тел. Без сомнения, эти известные основные условия были определены путем индукции. Мы хотим доказать только, что из данных основных физиологических фактов, утвержденных путем индукции, можно сделать, без всякого опасения, несколько общих выводов. И действительно, законность таких дедукций, хотя и не признанная формально, на практике подтверждается убеждениями каждого физиолога; это легко доказать несколькими примерами. Положим, физиолог нашел организм со сложными и разнообразно устроенными движениями, но без нервной системы; он был бы менее поражен нарушением эмпирического обобщения, что все подобного рода организмы имеют нервную систему, нежели опровержением бессознательной его дедукции, что все организмы со сложными и разнообразно устроенными движениями должны иметь "посредствующий" аппарат, который производил бы это устройство движений. Или если бы он отыскал организм с быстрым кровообращением и быстрым дыханием, но с низкой температурой, то факт, что деятельные перемены вещества вопреки выводу, сделанному им из химии, не произвели животной теплоты, изумил бы его более, чем исключение из постоянно наблюдаемых отношений этих характеристических признаков. Ясно, следовательно, что априористический метод играет уже роль в физиологических рассуждениях; если он не употребляется как общее средство для открытия новых истин, то прилагается, по крайней мере, как частное средство для подтверждения истин, добытых a posteriori.
Мы думаем, что вышеприведенные примеры достаточно указали, что этот метод может быть употреблен как независимое орудие исследования. Необходимость питательной, дыхательной и сосудистой систем у всех животных какой бы то ни было величины и живости представляется нам законно выведенной из условий непрерывной жизненной деятельности. Как только химические и физические данные определены, эти особенности устройства выведутся с такой же точностью, как выводится заключение о пустоте железного шара - из его способности плавать на воде.
Не следует, однако же, думать, будто мы утверждаем, что и более специальные физиологические истины могут быть добыты путем дедукции. Наша аргументация вовсе не предполагает этого. Законная дедукция предполагает достаточные данные; а относительно всех специальных явлений роста, строения и отправлений эти достаточные данные не достигнуты, да едва ли будут достигнуты. Только относительно более общих физиологических истин, вроде упомянутых выше, есть у нас достаточные данные для того, чтобы сделать дедуктивные рассуждения возможными.
Здесь мы достигаем пункта, которому предыдущие соображения служили введением. Мы намерены теперь показать, что существуют некоторые еще более общие свойства организованных тел, которые выводятся из некоторых еще более общих свойств вещей.
В опыте Прогресс, его закон и причина {Напечатан в апрельской книжке "Westminster Review" в 1857 г. и перепечатан в этом томе.} мы старались показать, что переход однородного в разнородное, составляющий сущность всякого прогресса, органического или иного, вытекает из произведения нескольких действий одной причиной и нескольких перемен одной силой. Указав, что таков всеобщий закон, мы принялись доказывать путем дедукции, что разнообразные развития однородного в разнородное - астрономические, геологические, этнологические, социальные и т. д. - объясняются как следствия этого закона. И хотя по отношению к органическому развитию недостаток данных не позволял нам проследить в частностях зависимость последовательных усложнений от помянутого закона, но нам удалось все-таки собрать различные косвенные доказательства в пользу нашего положения. Вывод, что органическое развитие порождается разложением каждой затраченной силы на несколько сил, насколько он основывается на указанном прежде общем законе, составляет положение дедуктивной физиологии. Частное было выведено из общего.
Здесь мы намерены показать прежде всего, что есть другая общая истина, находящаяся в непосредственной связи с вышеприведенною и вместе с нею лежащая в основе всякого вида прогресса, а следовательно, и прогресса организмов, - истина, которую можно даже считать занимающею первое место, если не относительно общности, то относительно времени. Истина эта состоит в том, что условия однородности суть условия неустойчивого равновесия.
Выражение неустойчивое равновесие употребляется в механике для обозначения такого равновесия сил, при котором введение какой-нибудь хотя бы и ничтожной силы нарушает прежний порядок и приводит к совершенно иному Так. палка, поставленная на нижний конец, находится в неустойчивом равновесии как бы тщательно ни придали мы ей отвесное положение, но, предоставленная самой себе, она начинает сначала незаметно наклоняться на одну сторону и затем с возрастающей быстротой переходит в новое положение. Наоборот, палка, повешенная за верхний конец, находится в устойчивом равновесии сколько бы мы ни выводили ее из этого положения, она снова возвращается к нему. Мнение наше состоит, следовательно, в том, что состояние однородности, подобно устойчивости палки, поставленной на нижний ее конец, не может сохраниться и что из этого должен неминуемо последовать первый шаг в тяготении к разнородному. Приведем несколько пояснений.
Из пояснений механики наиболее знакомое представляется чашками весов. Как бы верно они ни были сделаны и как бы ни были чисты и предохранены от ржавчины, невозможно удержать обе чашки в совершенном равновесии одна будет опускаться, другая подниматься - они будут усваивать разнородное отношение. Другое пояснение если мы бросим на поверхность жидкости несколько равных по размерам тел, притягивающих друг друга, - как бы мы единообразно ни разместили их - они мало-помалу сконцентрируются в одну или несколько неправильных групп. Далее, если бы можно было привести массу воды в состояние совершенной однородности - состояние полного покоя и строго одинаковой повсюду плотности, - все-таки лучеиспускание теплоты соседними телами, действуя различно на разные ее части, произвело бы неминуемо различия в ее плотностях, а следовательно, и течения и привело бы массу к разнородности. Кусок раскаленного вещества, нагретый сначала равномерно, скоро теряет равномерность температуры: наружные слои, охлаждающиеся быстрее внутренних, будут отличаться от последних И переход к разнородности температур, столь очевидный в этом крайнем случае, имеет место в большей или меньшей степени и во всех других случаях. Действие химических сил доставляет другие пояснения. Подвергнем кусок металла действию воздуха или воды: с течением времени он покроется пленкой окиси, углекислой соли или иного соединения, т. е. его наружные части будут отличаться от внутренних. Словом, каждая однородная агрегация вещества стремится тем или иным путем нарушить свое равновесие - химическим ли, механическим, термическим или электрическим; и быстрота, с какою тело переходит к состоянию неоднородности, составляет только вопрос времени и обстоятельств. Социальные тела обнаруживают закон этот с таким же постоянством. Сообщите членам какого-нибудь общества одинаковые свойства, положения, силы, и они тотчас же станут стремиться к неравенству. Это одинаково справедливо и для представительного собрания, и для управления железной дороги, и для частной промышленной компании-, однородность, хотя бы она и продолжалась с виду, в действительности неминуемо исчезнет.
Неустойчивость, поясненная этими разнообразными примерами, становится еще более очевидною, если мы рассмотрим рациональное ее основание. Неустойчивость эта представляет следствие факта, что разные части какой-нибудь однородной агрегации подвергаются действию различных сил, - сил, которые отличаются или по роду своему, или по своим размерам. Будучи же подвергнуты действию разных сил, они по необходимости будут и изменяться различным образом. Отношения внешнего и внутреннего положения и сравнительной близости к соседним источникам влияний предполагают восприятия этих влияний, разнящиеся по количеству, или по качеству, или по тому и по другому вместе, а из закона "сохранения силы" следует вывод, что в частях, подвергнутых различным действиям, должны произойти и несходные изменения. Итак, неустойчивость равновесия какой бы то ни было однородной агрегации может быть доказана как индуктивным, так и дедуктивным путем.
Теперь рассмотрим отношение этой общей истины к развитию организмов. Зародыш растения или животного представляет одну из таких однородных агрегаций, равновесие которых неустойчиво. Но это не обыкновенная только неустойчивость однородных агрегаций, а нечто большее. Агрегация состоит тут из единиц, которые сами имеют специальной чертой неустойчивость. Составные атомы органического вещества отличаются слабостью сродства, удерживающего в связи основные их элементы: они чрезвычайно чувствительны к жару, свету, электричеству и химическому действию посторонних элементов, т. е. они особенно способны изменяться под влиянием возмущающих сил. Отсюда следует a priori, что однородное сочетание подобных непостоянных атомов будет иметь сильное стремление утратить свое равновесие. У него будет как бы особая способность становиться неоднородным. Оно станет быстро стремиться к разнородности.
Сверх того, процесс должен повториться в каждой из последовательных групп органической единицы, дифференцировавшихся от влияния изменяющих сил. Каждая из таких последовательных групп, подобно главной группе, должна постепенно, в силу действующих на нее влияний, нарушить равновесие своих частей, - должна перейти от состояния единообразия к состоянию разнообразия. Так должно идти и далее.