Жан-пьер шанжё, ален конн материя и мышление
Вид материала | Документы |
- Кэрен Яшински и 02 Max Fitness, 273.95kb.
- Беседа Жан Батист Пьер Антуан де Ламарк, 1519.09kb.
- Направление "Энергетическая Остеопатия" существует во Франции уже 35 лет. Основоположник, 36.63kb.
- Испании Валляс Фермин Коломер, Пуит Марья Серрат, Хосе Пастор, Фало Консенсьон Висьедо,, 200.78kb.
- Сценарий: Бенуа Финкер, Жан-Пьер Ларош, Тьерри Руазен, 98.66kb.
- Л. Н. Толстой Война и мир роман Действие книги начинается летом 1805 г в Петербурге., 228.12kb.
- Пространство и материя, 398.24kb.
- Мышление и его патология Мышление, 686.03kb.
- Конгресс культуры восточного партнерства 21-23 октября 2011 г. Люблин, 240.12kb.
- Аюр кирусс «Ламарк и его эволюционные представления», 1012.21kb.
Ж.-П. Ш.: Вернемся к разговору о природе математических объектов. Существуют две диаметрально противоположные позиции: «реализм» и «конструктивизм». Для «реалиста», мировоззрение которого восходит непосредственно к Платону, мир наполнен Идеями, реальность которых отлична от реальности осязаемой (см. рис. 1). Многие из современных математиков считают себя «реалистами». Дьедонне, например, пишет в своей книге: «Довольно сложно описывать взгляды этих математиков, особенно если учесть, что взгляды эти от работы к работе меняются. «Реалисты» полагают, что математические объекты обладают некоей собственной «реальностью», отличной от реальности осязаемой (быть может, похожей на ту, которой Платон наделял свои «Идеи»?)». Один математик, не менее известный, чем Кантор, как-то писал:
Рис. 1. Гравюра XVII века, иллюстрирующая на аллегории Пещеры знаменитый пассаж Платона о Республике. Сократ и Глаукон беседуют о «реальности» отбрасываемых на стену пещеры теней по отношению к реаль-
ности объектов, эти тени отбрасывающих. Для Платона видимое есть лишь тень реальности, идеи же обладают независимой от остального мира экзистенцией. (Французская национальная библиотека.)
20 МАТЕМАТИКА и мозг
«Возможность сотворения бесконечного множества есть проявление наивысшего совершенства Господа, исток же этого совершенства в Его безграничной благости». И тут мы глубоко погружаемся в mathesis divina1 — иначе говоря, в совершенную метафизику! Чем и поражают работы серьезных ученых. Еще Декарт обращался к метафизике, размышляя о геометрии: «... когда я представляю себе треугольник, — писал он, — подобной фигуры, быть может, не существует более нигде в мире вне моей мысли, быть может, ее и вовсе никогда не существовало, что не мешает ей, тем не менее, обладать некоей определенной природой, формой, или сущностью, которая неизменна и вечна, которую я отнюдь не выдумал, которая никоим образом не зависит от моего разума» [25, с. 311]. Для «конструктивистов» математические объекты — это объекты разума, существующие исключительно в разуме математика. Не в платоновском мире, независимом от материи, а только в нейронах и синапсах математиков, эти объекты порождающих, равно как и тех, кто упомянутые объекты воспринимает и использует. Ту же точку зрения — естественно, доведенную до крайности — мы находим у философов-эмпириков, таких, как Локк или Юм. Последний писал, к примеру, что «все наши идеи суть оттиски наших впечатлений». Он полагал, что все геометрические объекты происходят исключительно из опыта. К какой из этих двух противоположных точек зрения ты бы отнес себя?
А. К.: Мне кажется достаточно близкой позиция реалистов. Последовательность простых чисел, например, обладает для меня куда более прочной реальностью, нежели окружающая нас реальность материального мира. Математика можно сравнить с путешественником, открывающим мир. В процессе практической деятельности он обнаруживает всевозможные «сырые» факты. Например, производя элементарные вычисления, математик замечает, что последовательность простых чисел, судя по всему, не имеет конца. Далее ему необходимо доказать, что ряд простых чисел действительно бесконечен. Этот результат был получен еще Евклидом в глубокой древности. Если же кто-то возьмется утверждать обратное, представив якобы самое большое простое число, то будет очень легко доказать, что он не прав. Таким образом, нам
1От греч. μαθεσις «учение, знание» и лат. divinum «божественное». — Прим. перев.
3. ИЗОБРЕТЕНИЕ или ОТКРЫТИЕ? 21
открывается реальность столь же несомненная, как и реальность материального мира.
В поисках математической реальности математик создает «мысленный инструментарий». Этот инструментарий не следует путать с самой математической реальностью. Например, десятичная система — привычный нам инструмент мысли, но было бы ошибочно приписывать какой-то иной смысл десятичным цифрам, составляющим какое-либо число. Скоро мы будем праздновать наступление 2000 года. Значимость этого числа — сугубо культурный феномен. Для математика число 2000 не представляет никакого интереса. Из всех методов, которыми располагает математик для изучения математической реальности, я бы выделил аксиоматику. С ее помощью можно ставить задачи по классификации математических объектов, определяемых некоторыми простыми условиями. Мы можем, например, точно определить количество конечных тел. Конечное тело есть конечное множество, в котором выполняются законы сложения и умножения, в соответствии с которым у каждого ненулевого числа имеется число обратное. Правила, удовлетворяющие закону сложения и умножения, совпадают в данном случае с знакомыми нам правилами для сложения и умножения целых чисел. Можно доказать, что для каждого простого числа p и каждого целого числа n существует некоторое конечное тело, причем одно-единственное, содержащее рп элементов. Раз у нас есть такие теоремы, это означает, что хотя бы одна область математики уже исследована во всех даже самых дальних ее закоулках — по крайней мере, в том, что касается перечня возможных объектов. И все это без опоры на материю.
Ж.-П.Ш.: А мне, напротив, кажется, что математические объекты существуют в твоем мозгу физически. Ты внутренне исследуешь их в процессе осознания, в физиологическом смысле этого слова. Если ты можешь изучать их свойства, то только потому, что объекты эти обладают физической реальностью. Ты упоминал об эксперименте с мысленным вращением объектов [93, с. 18], которое обрабатывается мозгом физически. Наш мозг — это сложный физический объект. В этом качестве он создает «представления», отождествляемые с физическим состоянием. Математические же объекты могут стать в голове математика объектами материальными — иначе говоря, «мысленными объектами» [9] со свойствами, которые можно анализировать посредством мыслительного процесса (рефлексии). С помощью этого процесса можно вызывать
22 МАТЕМАТИКА и мозг
и другие, более обыденные, математические объекты, которые ты называешь инструментами. Не думаю, что они имеют совершенно разную природу, несмотря на разный уровень их сложности и абстрактности. Наконец, работа математика требует от мозга способности к рассуждению, к осуществлению логических построений, что, на мой взгляд, непосредственно связано с организацией нашего мозга, и эта способность уже должна была существовать, по крайней мере, частично, в те времена, когда Homo erectus развивал стратегии обработки каменных орудий (см. рис. 2). Упомянутые «математические объекты» отождествляются с физическими состояниями нашего мозга таким образом, что мы, в принципе, можем наблюдать за ними извне, благодаря методам визуализации работы живого мозга. На данном этапе разрешающая способность этих методов еще недостаточна, чтобы использовать их максимально эффективно, однако сама идея, несомненно, заслуживает внимания.
А. К.: Если мы признаем существование некоей математической реальности, независимой от человека, то необходимо четко отделить эту реальность от способа ее постижения. Ясно, что для восприятия этой реальности наш мозг использует собственную физическую систему визуализации — по крайней мере, для восприятия обычной геометрии, в основе которой лежат действительные числа и евклидово пространство. Тем не менее, вооружившись аксиоматическим методом, не говоря уже о других, математик может решиться выйти за пределы этой всем известной области. Как же функционирует в тех неизведанных краях система мысленной визуализации? Рассмотрим один пример. К настоящему моменту уже создана полная классификация локально компактных полей. Такие поля мы умеем точно определять — иначе говоря, мы способны определять математические объекты, в пределах которых действуют законы сложения и умножения, а каждое ненулевое число имеет обратную величину, причем объекты эти локально компактны. Нам известна действительная прямая, на которую опирается вся физика. Однако имеются еще и такие весьма странные поля, которые мы называем р-адическими (см. рис. 3). До сих пор они еще ни разу не помогли решить ни одну физическую задачу. Однако они существуют и параметризуются простыми числами таким образом, что каждому простому числу соответствует некоторое р-адическое число. Нам известны также малые вариации этих полей, называемые алгебраически-
3. ИЗОБРЕТЕНИЕ или ОТКРЫТИЕ?
23
Рис. 2. Предки Homo sapiens разрабатывают способы обтесывания каменных орудий труда, требующие одновременно известной точности движений и высокой степени предвидения в ходе ручной работы. Способности к логическому представлению и рассуждению были уже очень развиты у того Homo erectus, который изготовил эти орудия и приручил около 400000 лет назад огонь... Судя по легкой асимметрии между отпечатками правого и левого полушарий на костях черепа, Homo erectus уже пользовался речью [70].
24 МАТЕМАТИКА и мозг
ми расширениями: поле комплексных чисел, другие алгебраические расширения ρ-адических полей и, наконец, поля формальных степенных рядов над конечными полями. Физическое применение находит только одно, или, скорее, два из всех этих полей: действительное и комплексное. С такими числами, как р-адиче-ские, можно производить вычисления. Однако выглядит все это так, словно вместо того, чтобы считать слева направо, мы считаем справа налево. Понятия разрядности и значения числа здесь не соответствуют нашему привычному представлению об этих понятиях. Такие вычисления может с одинаковым успехом производить как компьютер, так и человеческий мозг. Вот только сложно найти достаточно простую физическую модель, способную выступить в качестве основы для мысленной визуализации этих вычислений. Мне, впрочем, думается, что мозг с его способностью к адаптации вполне может сформировать интуитивное представление, не имеющее никакой связи с физической реальностью, но адекватное для решения поставленных математических задач.
Ж.-П.Ш.: Мне кажется, ты не проводишь достаточно четкой грани между собственно математическими объектами и их свойствами. Эти объекты представляют собой «новые конструкции», представление о которых математик вырабатывает еще до того, как он изучит все их свойства. Поначалу математик располагает лишь «предположениями», или «постулатами», которые затем он может доказать или опровергнуть. Именно в предположениях, в изначально постулируемых конструкциях, мы прикасаемся к природе математических объектов. Еще Джон Стюарт Милль предлагал говорить, что «факт, получивший численное определение, есть факт материальный» [79]. Нет ничего удивительного в том, что целые числа обладают теми или иными свойствами. Эти свойства содержатся в том самом определении, которое предлагает математик на основании своего первоначального интуитивного предположения. Однако для изучения этих свойств требуется время. Аксиоматика, логика и все соответствующие им функции мозга играют, таким образом, решающую роль в анализе и дедукции, т. е. выступают в роли логического аппарата. Одной из наиболее поразительных качеств человеческой мыслительной машины является ее способность не только создавать новые мысленные объекты, но и анализировать их свойства, которые зачастую, но уже a posteriori, кажутся крайне простыми.
3. ИЗОБРЕТЕНИЕ или ОТКРЫТИЕ?
25
Действительное число
в диадическом представлении
Сложение двух действительных чисел
10,010110100010...
10,0101101000100..
4- 1,1001001100110.,
- 11,1110110101010.
..0010001011010,01
,.0010001011010,01 ..0110011001001,1 4
,.1000100100011,11
р-адическое число, p — 2
Сложение двух р-адических чисел
Рис. 3. Пример сравнения сложения двух действительных чисел в диадическом представлении и сложения двух чисел в р-адическом представлении при p — 2. Соотношение действительных чисел определяется тождеством следующего вида: 0,00111111 ... = 0,0100000 ...
А. К.: В начальной школе детей учат сложению и делению простых чисел. Было бы значительно сложнее научить их манипулировать р-адическими числами. Почему? Да потому что в этом случае они пропустили бы очень важный для математической практики этап — контакт с реальностью. За пределами реальности мы теряем непосредственное ощущение величины и вынуждены заниматься чистыми вычислениями. Реальность, с которой мы имеем дело здесь, уже не является той осязаемой реальностью, которой обладают равнобедренные и какие угодно еще треугольники. Она гораздо шире. Когда мы производим вычисление двумя разными способами и не приходим к одному результату, мы испытываем настоящую фрустрацию. Такова математическая реальность для меня. Существует некая взаимосвязь, до сих пор не объясненная
26 МАТЕМАТИКА и мозг
и никак не зависящая от используемого нами набора методов рассуждения, которая гарантирует, что если все делать правильно, то ошибка обязательно отыщется. А здесь обнаруживается новая взаимосвязь, выходящая за пределы той взаимосвязи, что является продуктом чувственной интуиции, непосредственного восприятия феноменов.
Ж.-П.Ш.: То, что эта взаимосвязь пока не объяснена, еще не означает, что ее нельзя объяснить. Тем более если она, как ты утверждаешь, независима от используемого нами набора методов рассуждения.
4. Об историческом аспекте математики
Ж.-П.Ш.: У меня все же остаются сомнения относительно той точки зрения, которая утверждает, что математические объекты существуют где-то «во вселенной», независимо от каких-либо материальных и «внутримозговых» опор. Мне кажется полезным несколько дистанцироваться от работы математика и, в частности, от объектов, которые он создает. Математический объект следует помещать в тот исторический контекст, в котором он первоначально возник. Математику преподают как связную систему предположений, теорем и аксиом. При этом забывают, что все они появлялись постепенно, в процессе исторического развития математики и человеческих обществ — короче говоря, речь идет уже об объектах культурных, подверженных действию процессов эволюции. Помещение же математических объектов в историческую перспективу позволит их «секуляризировать», сделать не столь возвышенными, какими они порой представляются. Теория сменяет теорию, а некоторые теории, не опровергая предшествующие, привносят новый угол зрения. Так случилось, к примеру, с неевклидовой геометрией. Аксиомы неевклидовой геометрии образуют связное целое, т. е. здесь перед нами та самая взаимосвязь, которая так тебя удивляет и которая представляет собой, пусть только внешне, целостную систему, совершенно свободную от какой бы то ни было, как ты говоришь,* опоры на материю. И все же в XIX веке неевклидовы геометрии перевернули всю математику с ног на голову.
А. К.: Но ни в коей мере не нарушили целостности геометрии евклидовой! Более того, воспользовавшись этим примером,
4. ОБ ИСТОРИЧЕСКОМ АСПЕКТЕ МАТЕМАТИКИ 27
можно продемонстрировать возможности и продуктивность аксиоматического инструментария. Поначалу геометрия Евклида воспринималась через посредство одного лишь физического опыта. Евклид попытался предложить несколько аксиом, позволяющих осуществлять так называемые доказательства. Одна из этих аксиом представлялась совершенно избыточной: аксиома о единственности параллельной прямой, которую можно провести через одну данную точку. Казалось, можно доказать, что эту аксиому нет необходимости выделять, что она следует из других аксиом. Именно благодаря попыткам доказать ее право на существование в виде аксиомы были открыты все неевклидовы геометрии. На протяжении значительной части XIX века эти геометрии воспринимались математиками как нечто крайне эзотерическое. Гаусс даже не решался публиковать полученные им результаты, опасаясь, что ему просто-напросто не поверят. Затем в один прекрасный день Пуанкаре обратил внимание на то, что геометрия поверхности с кривизной — 1 предоставляет удобный, хотя и необычный, способ решения задач теории чисел, которыми он в то время занимался вне связи с геометрией. Из этого наблюдения родилась его теория автоморфных функций. А что вообще привело нас к мысли о возможности существовании неевклидовых геометрий? Может быть, мы убедились посредством наблюдений, что окружающее нас пространство евклидовой геометрией не описывается? Нет, мы просто решали некую аксиоматическую задачу, пытаясь объяснить геометрию через по возможности наименьшее количество свойств.
Ж.-П. Ш.: Это опять же не доказывает, что математические объекты нематериальны! На мой взгляд, аксиоматический метод есть представление, формируемое теми или иными способностями мозга — например, когнитивными способностями, связанными у человека с использованием языка. А определяющим свойством языка как раз и является его генеративный характер.
А. К.: Здесь уместно упомянуть об одной присущей математике характерной особенности, которую очень сложно объяснить. Предположим, мы решили составить полный список математических объектов, определяемых некоторыми очень простыми условиями, и ценой значительных усилий нам это удалось. Интуитивно мы полагаем, что наш список полон и исчерпывающ, и, как правило, стараемся отыскать способ это доказать. Однако часто бывает так, что в процессе этого самого доказательства мы обна-
28 МАТЕМАТИКА и мозг
руживаем какие-то другие объекты. Возьмем, например, теорию конечных групп. Понятие это весьма элементарно — того же порядка, что и понятие целого числа. Конечная группа — это группа симметрии конечного объекта. Были предприняты попытки классифицировать так называемые простые конечные группы, т. е. такие группы, которые, подобно простым числам, нельзя разложить на более мелкие группы. Задача эта крайне сложна. Галуа показал, что при n 5 группа парных перестановок множества из n элементов является простой. А француз Клод Шевалле построил ряды простых конечных групп, напоминающие так называемые ряды групп Ли. Можно было бы решить, что помимо этих групп и тех, что открыл в прошлом веке Матье, никаких других групп не существует. Однако когда попытались это доказать, было обнаружено еще 20 групп, которые в перечень Шевалле не попали: речь идет о так называемых спорадических группах. Около 15 лет назад отыскали последнюю простую конечную группу, удостоенную эпитета «чудовищная». Эта открытая путем чисто математического рассуждения конечная группа содержит весьма впечатляющее количество элементов:
808017424794512875886459904961710757005754368000000000
На сегодняшний день специалистам удалось ценой героических усилий доказать, что список из 26 простых конечных спорадических групп наконец-то полон (см. рис. 4).
Ж.-П. Ш.: Я не понимаю, каким образом возможность исчерпать все возможные варианты доказывает, что рассматриваемый объект есть некая «идеальность», существующая вне зависимости от человека. Возьмем, например, какой-нибудь правильный объект, куб или пирамиду из каменной соли. Ясно, что их свойства можно перечислить очень быстро. Это, однако, не доказывает, даже если так думает сам Декарт, что эти свойства можно классифицировать, как «вечные и неизменные» и никоим образом не зависящие от нашего мозга. Когда математик вырабатывает те или иные правила логической взаимосвязи (правила исключения, формализм), он строит некий универсальный язык, который позволяет ему исследовать свойства объекта, который он сам предварительно создал. В итоге математическое «открытие» представляет собой не более чем вывод из того, что сам же математик и придумал! Математик вскрывает лишь то, что Гранже называет «формальным
4. ОБ ИСТОРИЧЕСКОМ АСПЕКТЕ МАТЕМАТИКИ 29 КОНЕЧНЫЕ ГРУППЫ________________________________________________
Определение
Конечная группа G задается конечным множеством G и законом композиции, т.е. представляет собой такое отображение G χ G на G (обозначаемое (gr1, д2) —> 9\9?,}< что:
1) 9ι (92 9з} = (9ι 02 ) 9з АЛ* всех 9г £ G<
2) существует такое е £ G, что eg — де = g; V g G G;
3) для всех g G G существует такое _г G G, что ##__! — g1g = e.
Гомоморфизм группы G! на группу G2 есть такое отображение / множества GJ на множество G2, что 1(д1д2) = 1(дг 1(д2))> V 9ι 92 G-
Конечная группа G является простой тогда и только тогда, когда любой гомоморфизм G на G' является либо постоянным, либо инъективным.
Теорема классификации простых конечных групп Простыми конечными группами являются следуюище:
— циклические группы первого порядка;
— чередующиеся группы пятого или менее порядка;
— группы Шевалле и группа Титса;
— 26 спорадических групп.
Спорадические группы:
ГРУППА ПОРЯДОК ИССЛЕДОВАТЕЛЬ
МГ1 24.32.5. 11 Матье
М12 26.33.5. 11 Матье
М22 27.33.5.7. 11 Матье
М23 27.32.5. 7. 11.23 Матье
М24 210.33.5.7. 11.23 Матье
J2 27.33.52.7 Холл, Янко
Suz 213.37.52. 7. 11. 13 Судзуки
H S 29. З2. 53. 7. 11 Хигмен, Симе
McL 27. З6. 53. 7. 11 Маклафлин
Со3 21υ.37. 53.7. 11.23 Конуэй
Go2 218.36. 53.7. 11.23 Конуэй
Col 221.39. 54. 72. 11. 13. 23 Конуэй, Лич
Не 210.33. 52.73. 17 Хелд/Хигмен, Маккей
Fг22 217.39. 52. 7. 11. 13 Фишер
Fi23 218.313.52.7. 11. 13. 17.23 Фишер
Рг24 221, З16. 52. 73. 11. 13. 17. 23. 29 Фишер
HN 214.36.56.73. 11. 19 Харада, Нортон/Смит
Т h 215.310.53.72. 13. 19.31 Харада, Томпсон/Смит
В 241.313.56.72. 11. 13. 17. 19.23.31.47 Фишер/Симе, Леон
M 246. З20. 59. 76. 112. 132. 17. 19. 23. 29. 31. Фишер, Грисс
41.47.59.71
J1 23.3.5.7. 11.19 Янко
O'N 29.34. 73.5. 11. 19.31 О'Нан/Симс
J3 27.35.5. 17. 19 Янко/Хигмен, Маккей
Ly 28.37.56. 7. 11.31.37.67 Лайонс/Симс
Ru 214.33.53.7. 13.29 Рудвалис/Конуэй, Уэйлс
J4 221. З3. 5. 7. II3. 23. 29. 31. 37. 43 Янко/Нортон, Паркер, Бенсон,
Конуэй, Тэкрей
Рис. 4
30 МАТЕМАТИКА и мозг
содержанием» [43, с. 474-498]. Вряд ли сегодня кто-нибудь (за исключением, пожалуй, людей верующих, да и то не всех) станет утверждать, что Слово было прежде Материи!