Книги по разным темам Pages:     | 1 |   ...   | 17 | 18 | 19 | 20 | 21 |   ...   | 55 |

Глава 7. Какое небо голубое (атмосфера) 381. В большом зале на 1000 мест один невоспитанный товарищ выкурил 1 (всего одну!) сигарету. Сколько частиц дыма и пепла после этого попадает в лёгкие каждого из присутствующих при каждом вдохе Прежде всего, сделаем следующие разумные предположения. Будем считать, что дым и пепел от выкуренной сигареты равномерно распределились по всему залу, т. е. все присутствующие в зале получают свою дозу в равных количествах. Тогда нужно оценить соотношение объёмов зала и лёгких. Типичное значение рабочего объёма лёгких человека составляет около 2 литров. Типичная площадь залов составляет около 1 м2 на 1 место, а высоту зала можно принять равной 20 м; тогда объём зала составит 1000 м2 20 м = 20 000 м3, а соотношение объёмов лёгких и зала Ч10-7. Таким образом, каждый присутствующий при каждом вдохе получает одну десятимиллионнуюдолювсего дыма и пепла, произведённого сигаретой. Оценим теперь, много это или мало.

Как известно, сигареты (и другие табачные изделия) при сгорании выделяют большое количество весьма разнообразных (и, как правило, неполезных) газов, включая достаточно сложные молекулярные комплексы. Для простоты нашей оценки примем, что вся сигарета первоначально состоит из чистого углерода. Тогда, приняв вес сигареты равным 5 г, а вес каждого атома углерода, состоящего из 12 протонов и нейтронов (12С), равным 12 1,6 10-24 г, получим, что число атомов углерода в ней равно 2,6 1023. Соответственно, при сгорании (выкуривании) сигареты углерод полностьюокисляется кислородом из воздуха и переходит в такое же количество молекул углекислого газа СО2. Если вспомнить, что в каждом моле вещества содержится 6молекул (число Авогадро), то получаем, что от одной сигареты образуется 0,5 моля газа СО2, который занимает объём около 10 л. (Кстати, выкурив пачку сигарет, курильщик прогонит через свои собственные лёгкие 200 л газообразных продуктов сгорания). Доля каждого из присутствующих в зале при этом окажется несколько меньше Ч всего молекул от той же сигареты (или, другими словами, сто миллионов миллиардов). Желающие могут на досуге самостоятельно попытаться представить себе это число на каких-либо наглядных примерах.

Кроме газовой можно предпринять также пепловую оценку продуктов, любезно предоставляемых курильщиком всем окружающим.

Тот дым, который мы можем наблюдать при курении, представляет собой твёрдые аэрозольные частицы (кусочки сажи), образованные изза неполного сгорания материала сигареты, и имеющие размеры около 1 микрона, то есть 10-4 см. Тогда, принимая их плотность равной 1 г/см3, вес каждой такой частицы будет составлять 10-12 г, а их общее число от сигареты Ч 5 1012 частиц. Конечно, таких пепловых частиц в лёгкие каждого присутствующего попадет ещё меньше, чем газовых молекул, Ч всего 106. Однако, миллион потенциальных очагов воспаления и рака в собственных лёгких, Ч не так уж и мало. И это от одной (!) сигареты, на каждом (!) вдохе, в 1000-местном (!) зале, и от другого товарища (!). А если сам, пачку, и не открывать в комнате окно 383. Могут ли звезды не мерцать Могут ли планеты мерцать См. ответ на вопрос №114, стр. 93 (конец текста ответа).

393. Какова максимально возможная на Земле скорость ветра А на других планетах (Марс, Венера, Юпитер) Конкретные цифры скорости ветра при урагане около поверхности земли составляют 30Ц100 м/с. Например, при урагане в г. Москве 20 июня 1998 г. значения скорости ветра достигали 26Ц30 м/с. При этом ширина ураганного фронта составляет от нескольких километров до нескольких десятков километров.

Другой часто встречающейся разновидностью сильного ветра у поверхности земли являются смерчи и тайфуны. Структура у смерча и тайфуна, в отличие от обычных атмосферных фронтов, представляет собой спирально закрученное движение воздуха. Смерчи возникают между быстро движущимися грозовыми облаками и поверхностьюземли и имеют диаметр от нескольких метров до десятков метров.

Тайфуны возникают в тропической зоне океана за счёт более сильного нагрева нижних слоёв воздуха и возникающей вследствие этого термодинамической неустойчивости. Они включают в себя значительно большие объёмы воздушных масс, захватывают нижнюю тропосферу до высоты 10Ц12 км и имеют горизонтальные размеры до нескольких сотен километров. Скорости ветра в смерчах и тайфунах также могут достигать 100 м/с.

Весьма интересное природное явление представляет собой т. н. стоковый ветер в Антарктиде. Поскольку Антарктида является ледовым куполом вокруг Южного полюса с высотами 2000Ц4500 м, над ней образуется так называемый лантарктический антициклон. В центральных областях материка холодный воздух опускается из верхних слоёв атмосферы, а затем, двигаясь к окраинам Антарктиды, он скатывается до уровня моря и при этом разгоняется до ураганных скоростей (до 60 м/с) на кромке ледовых полей. Все рассмотренные примеры ветров представляют движения воздушных масс около поверхности Земли. Вместе с тем, значительные по скорости ветры господствуют в верхней тропосфере и стратосфере. Они также могут достигать скоростей 100 м/с и называются струйными течениями. Структура струйных течений определяет, в частности, западный перенос масс в наших средних широтах, а также долговременные изменения погодных условий.

Что касается иных планет, то прежде всего необходимо отметить, что общая (глобальная) циркуляция атмосферы на разных планетах существенно различается. На Земле имеются несколько зональных поясов, в которых направление переноса воздушных масс изменяется.

В тропической зоне господствуют пассаты, движущиеся на запад, против направления вращения Земли, и сдвигающие воздушные массы от линий тропиков к экватору. В средних широтах, как было сказано выше, преобладает противоположный перенос, с запада на восток и от линий тропиков к полярным кругам. В полярных зонах, как правило, располагается антициклон с направлением движения воздуха от полюса.

Венера, являясь близкой к Земле планетой по размерам, имеет принципиально инуюобщуюциркуляциюсвоей атмосферы, которая вся движется с запада на восток, как бы единым потоком. В экваториальной зоне атмосфера обращается вокруг планеты за 4,5 дня, что соответствует постоянной скорости ветра 100 м/с. Однако, такой ветер дует только на высотах 20Ц22 км над поверхностью планеты; на высоте 10 км ветер падает до 10 м/с, а возле поверхности Венеры он ещё слабее. Кроме этого широтного ветра наблюдается также и меридиональный перенос масс от полюсов Венеры к её экватору, который примерно в 10 раз медленнее. Все эти особенности ветров венерианской атмосферы, а также её турбулентность, наблюдались во время полета в атмосфере Венеры баллонов с космических станций ВегаЦи 2 в 1986 г. Принципиально иное строение и динамику имеет атмосфера самой большой планеты Солнечной системы Ч Юпитера. Один оборот Юпитер совершает за 10 часов, что соответствует скорости движения 44000 км/час (120000 м/с). Однако, поскольку у Юпитера нет (не наблюдается) твёрдого тела, то видимое движение его атмосферы, соответственно, трудно называть собственно ветром. Внешняя атмосфера Юпитера, как известно, разделена по широте на светлые зоны (где атмосферные массы поднимаются снизу вверх) и тёмные полосы (где они опускаются). Скорости взаимного движения полос и зон достигают 150 м/с. Знаменитое Большое Красное пятно Юпитера, которое представляет собой гигантский циклон или вихрь между двумя соседними полосами, вращаясь с периодом около 6 суток, имеет скорость ветра на периферии 1000 км/час (270 м/с).

Атмосфера Марса более разреженная, чем у Земли, и характеризуется возникающими время от времени ураганами со скоростями в несколько десятков м/с. Они захватывают значительные области планеты и наблюдаются как пылевые бури.

Разумеется, имеются также и принципиальные ограничения скорости ветра где бы то ни было: это скорость звука в атмосфере, которая зависит от её температуры и давления (для поверхности Земли Ч 330 м/с). При достижении скорости звука любое движение воздуха превращается в ударную волну, и физика всех дальнейших процессов становится принципиально иной. Разумеется также, что никакой ветер (также как и ничто материальное) не может превосходить скорость света.

404. Какую погоду приносит циклон над Европейской частью России Циклоном называют область пониженного атмосферного давления, в отличие от антициклона, где атмосферное давление выше среднего.

Перепады давления каждый может наблюдать самостоятельно с помощьюобычного барометра-анероида. Та сторона шкалы барометра, которая соответствует высокому давлению, обозначается обычно словом лясно, а с низким давлением словами пасмурно или буря.

Если рассмотреть циклон в вертикальном разрезе, то можно было бы увидеть, что в его центральной части тёплый воздух поднимается вверх. У поверхности земли при этом атмосферное давление уменьшается, и приземный воздух из окружающих областей устремляется внутрь циклона. Образуется своеобразная воронка, стягивающая воздух и облака с периферии циклона к его центру. При подъёме тёплого и влажного воздуха вверх он адиабатически охлаждается, его относительная влажность возрастает до точки росы (при том же содержании водяного пара), и начинается быстрая конденсация пара в водяные капли. Из-за этого в циклоне образуется мощная облачность, и начинаются интенсивные осадки, а в приземном слое дует сильный ветер.

Из-за вращения Земли любая система координат на её поверхности является неинерциальной, и на всякое движущееся тело действует специфическая сила инерции, которая называется силой Кориолиса. Она отклоняет движущиеся тела и потоки вправо в северном полушарии Земли, и влево Ч в южном. По этой же причине, в частности, отклоняются вправо русла рек (см. комментарий 268, стр. 123). Для потока воздуха, испытывающего инерционное отклонение вправо, это аналогично отклонению центра циклона влево. Соответственно, в горизонтальной плоскости (на карте) циклон представляет собой потоки воздуха, движущиеся к его центру по левозакрученной спирали.

На разных планетах реализованы различные режимы глобальной циркуляции атмосфер. Например, на Венере господствует симметричный режим циркуляции: весь облачный слой атмосферы вращается в восточном направлении (т. н. широтный ветер). На Юпитере вся атмосфера также вращается в одну сторону, но она при этом разбита на большое число полос и зон. На Земле наблюдается более сложный, т. н. волновой режим циркуляции, при котором вся атмосфера разбита на три зоны: экваториальную, среднюю и полярную; причём в экваториальной зоне господствуют восточные ветры, а в средней Ч западные. Соответственно, такое атмосферное явление, как циклоны, характерны для средних широт, и на Европейскую часть России они приходят с запада, из средней и северной Атлантики.

При приближении циклона атмосферное давление начинает уменьшаться (лбарометр падает), при этом дует западный или южный ветер, несущий тёплый и влажный воздух. В разгар циклона выпадают обильные осадки, а сильный ветер может быстро изменять свое направление (лбуря, гром и молния, барометр упал и разбился). После прохождения циклона дует, как правило, сильный северный ветер, и устанавливается холодная погода. За характерный внешний вид на космических снимках и обилие приносимых ими осадков циклоны иногда ещё называют лоханками с дождями.

411. 20 июня 1998 года над Москвой пронёсся мощный ураган. Почему сломанные деревья были повалены не везде, а в некоторых местах в виде полос Почему образовался подобный ураган, какова была его ширина у поверхности земли и скорость ветра Чем он отличается от тропических тайфунов Ураганный ветер (до 30 м/с) возник из-за столкновения двух атмосферных фронтов с большой разностью температур и давления воздуха, имел зону действия около 30 км 300 км и причинил разрушения в местах прохождения наиболее быстрых вихрей воздуха.

юбой поток воздуха, а тем более такой мощный, как ураган, имеет не равномерный характер, а вихревой. Примеры таких вихрей можно наблюдать на клубах дыма, облаках и других видимых потоках. Их размеры в свободной атмосфере составляют от сотен до десятков метров.

Поток в целом характеризуется некоторой средней скоростью, а скорость движения воздуха в данной точке Ч её моментальной скоростью.

Моментальная скорость варьируется относительно средней в достаточно широких пределах и может значительно её превышать (иногда в несколько раз). Вместе с тем известно, что сила аэродинамического сопротивления любого тела в потоке пропорциональна квадрату скорости потока. Таким образом, если моментальная скорость воздуха в локальном вихре превысит среднюю, например, в 3 раза, то сила давления на препятствия этому потоку может возрасти почти в 10 раз. Поэтому понятно, что вывал деревьев происходит не повсеместно, а в тех зонах, где более быстрая половина вихрей касалась и прокатывалась по поверхности земли, шириной в десятки и длиной в сотни метров. Подобное же воздействие при шквалистом ветре можно наглядно видеть на поверхности небольших водоёмов или на равномерно засеянном поле.

Ураганные ветры на средних равнинах могут возникать из-за столкновения двух атмосферных фронтов с сильно различными температурами и давлениями воздуха в них. Горизонтальные размеры таких фронтов составляют сотни километров. 20.06.1998 г. над Москвой встретились воздушные массы относительно сухого воздуха с температурой +35 С и влажного с температурой +10...15 С. Когда вследствие взаимного движения фронтов более тяжёлый холодный воздух оказался над более лёгким тёплым, возникли условия динамической неустойчивости; тёплый воздух начал подниматься вверх, а холодный Ч падать вниз с большой скоростью, образуя мощные потоки и вихри. Ширина полосы разрушительного урагана составила 20Ц30 км, протяжённость Ч до 300 км, скорость ветра Ч до 30 м/с.

Повторяемость подобных ураганов, иногда сопровождаемых также смерчами, для конкретной местности составляет несколько раз в столетие. В условиях городской застройки воздушные потоки в приземном слое могут как ускоряться в узкостях, так и тормозится зданиями, но этот фактор не является главным; нередко в одинаковых соседних дворах картина была совершенно различной: от отсутствия повреждений до полного вывала деревьев.

Тропические тайфуны, напротив, являются типичным явлением и повторяются десятки раз за сезон. Они образуются в тропических зонах, где Солнце светит отвесно и сильно нагревает поверхность и нижний слой воздуха. При этом неравновесные условия в атмосфере создаются практически повсеместно, особенно над ровной поверхностью океана.

Pages:     | 1 |   ...   | 17 | 18 | 19 | 20 | 21 |   ...   | 55 |    Книги по разным темам