Книги по разным темам Pages:     | 1 | 2 | Физика твердого тела, 2006, том 48, вып. 7 Многоплазмонные реплики полос излучения связанных экситонов в кристаллах ZnSe й А.А. Клюканов, К.Д. Сушкевич, М.В. Чукичев, А.З. Ававдех, В. Гурэу, А.В. Катаной Молдавский государственный университет, MD-2009 Кишинев, Молдавия Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия E-mail: klukanov@cinf.usm.md (Поступила в Редакцию 2 июня 2005 г.

В окончательной редакции 26 сентября 2005 г.) Проведены исследования катодолюминесценции кристаллов ZnSe, выращенных из паровой фазы и отожженных в расплаве Bi [ZnSe(Bi)] при температуре 1200 K в течение 12 h, а также в расплаве висмута с добавлением Al [ZnSe(Bi,Al)]. LO-фононные реплики линий излучения свободных экситонов доминируют в спектрах катодолюминесценции образцов, отожженных в Bi с последующей закалкой. В излучении всех образцов, включая исходные, наблюдались серии линий Is,d - nLO связанных экситонов. Найдено, 1 что плазмонные повторения характерны не только для линий Is - nLO. Слабое экситон-плазмонное 1 взаимодействие проявляется в виде одноплазмонных стоксовских боковых полос линий Id - nLO. Построена 1 теория многоквантовых оптических переходов связанных экситонов с участием смешанных плазмонфононных мод колебаний, позволяющая вычислить форм-функцию спектра излучения без использования модельных представлений. Теоретические расчеты согласуются с экспериментальными данными.

PACS: 71.35.-y, 71.45.Gm В работах [1Ц3], посвященных исследованию като- действие в многочастичной системе электронов и долюминесценции кристаллов ZnSe, отожженных в ва- ядер.

кууме, а также в расплавах Zn, Sb и Bi, были проанализированы особенности спекторов излучения свя1. Многоквантовые оптические занных экситонов, обусловленных их взаимодействием переходы с LO-фононами и плазмонами при гелиевых температурах. Связанные экситоны, ответственные за линию Is (456 nm), сильно взаимодействуют с фононами и плаз- Отклик многочастичной системы, гамильтониан которой имеет вид монами, что проявляется в многоплазмонной структуре спектров. Сильная экситон-фононная связь обусловлена природой центров Is с существенно неравными по = + m nm n,n,m величине радиусами локализации электрона и дырки в отличие от центра Id. При сравнительно высоких r концентрациях свободных электронов N 1017 cm-3, + V ei,n e-ir + + mn, l l p,m p когда возникает смешивание LO-фононов с плазмонами,, m,n,l,p константы взаимодействий связанных экситонов с LOфононами NLO и плазмонами Np, а также расстояния 4qq V =, (1) между сателлитами в сериях линий Is,d - nLO - mPl V становятся зависящими от N [2]. Было показано, что на внешние продольные и поперечные электромагнитрезонансное взаимодействие связанных экситонов Is ные поля определяется [1Ц6] временной зависимостью и Id с верхней модой плазмон-фононных смешанных оператора микроскопической поляризации колебаний приводит к расщеплению линии Id (445.8 nm) i по типу пиннинга [3].

Pf i i i f i Pf = +, =, Pf. (2) Настоящая работа посвящена дальнейшему исследоt ванию многоплазмонной структуры линий Is,d - nLO.

Здесь +, a Ч операторы рождения и уничтожения Прежде всего, заметим, что в работах [1Ц3] теоi f рия формы спектра излучения связанного экситона бы- соответственно, V Ч Фурье-образ кулоновского потенла развита с использованием многократно апробиро- циала. Индексы i, f символизируют наборы квантовых ванной модели ВаньеЦМотта. Рассмотрим здесь фор- чисел, характеризующих базисные функции многочаму спектра излучения связанных экситонов без ис- стичной системы. Индекс = e, n (qe = e) различает пользования модельных представлений. Исходным бу- электроны и ядра. Взаимодействие с электромагнитным дем считать неэкранированное кулоновское взаимо- полем и кулоновское притяжение между электронами и 1178 А.А. Клюканов, К.Д. Сушкевич, М.В. Чукичев, А.З. Ававдех, В. Гурэу, А.В. Катаной ядрами включены в оператор Расчет микроскопического отклика на внешние возмущения включает операцию усреднения на равновес1 q ной матрице плотности. Ограничиваясь приближением = p - (r, t) 2m c f HE i f = i f = hii(t) - hif f (t), выполняя расцепление и усреднение операторов, находим,, + q(r, t) + V eir (3) Pi f (t) =Gi f (t)Pi f (0), nm, = e-ir P nm n,m t где p Ч оператор импульса, r Ч радиус-вектор Gi f (t) =exp i i f (s) ds + g2(t). (8) частицы с зарядом q, штрих у знака суммы по означает, что =. Остальные обозначения стандартны.

Решение гайзенберговского уравнения движения (2) Здесь функция g2(t) определяется выражением для оператора Pi f после вычисления коммутатора и преt s образования четырехоператорных членов может быть представлено в виде (индекс временно опустим) g2(t) =- ds ds1 i f (s)i f (s1) 0 Pi f = -f iPi f + Pi f i+, f i t - i f (s) i f (s1), (9) t i Pi f (t) = exp - f i(s)ds Pi f (0) полученный результат для оператора микрополяризации соответствует учету двух членов разложения в методе t кумулянт [8]. Как известно, приближение случайных фаз i состоит в замене мгновенного поля, образуемого плаз exp i+ (s)ds. (4) f мой, на среднее [9]. Оператор микрополяризации (8), вычисленный в аналогичном приближении средней чаЗдесь оператор f i определяется выражением стоты перехода, может быть использован далее для расчетов функций отклика, например, коэффициента поглоi, f щения света и скорости спонтанной рекомбинации [1Ц9].

f i(t) = hif f (t) - hf i(t) (t) - hf n(t) (t). (5) f i f n 2 Первая кумулянта n Знак i, f у суммы по n означает, что слагаемые с i f = i - f - VMii f (nf - ni), nf f n = i, f необходимо исключить. Первый член в форму ле (5) определяет диагональную часть оператора f i в = P (10) обобщенном приближении ХартриЦФока f f i помимо разности хартри-фоковских собственных зна f hif f (t) = f (t) - VMii f Pii(t) - V Minf Pin(t), f чений i - f начального i- и конечного f -состоя n ний (приближение Купмэнса) учитывает кулоновское неэкранированное взаимодействие квазичастицы в Mkl = eire-ir - eire-ir, nm nm kl nl km f -состоянии и квазидырки в i-состоянии. Вторая кумуf f f (t) = f f (t) + V MnmPnm(t). (6) лянта nm t s Недиагональные слагаемые в уравнении движения (2) с помощью операторов коммутации nm приведены к g 2(t) = ds ds1 (V )2Mif (t1)-(t2), диагональному виду (4). Действие оператора коммута- 0 ции на оператор микрополяризации Pi f по определению состоит в следующем:

Mif = eir e-ir (11) ii f f nmPi f =[Pnm, Pi f ] = Pnf im - Pimnf. (7) описывает эффект экранировки кулоновского взаимодейОператор коммутации уравнения движения (2) расствия экситона и многоквантовые переходы. Коррелясматривался Березиным [7]. Явный вид громоздких вытор плотностьЦплотность в уравнении (11) с помощью ражений операторов hmn в формуле (5) приводить не флуктуационно-диссипационной теоремы выразим через будем. продольную диэлектрическую функцию [9]. Вторая куФизика твердого тела, 2006, том 48, вып. Многоплазмонные реплики полос излучения связанных экситонов в кристаллах ZnSe мулянта принимает вид 1 g 2(t) = V d(n + 1)Im (, ) Mif it + (e-it - 1), n =, =, (12) e - 1 k0T линейный по времени t вклад в g 2 (12) можно преобразовать с использованием правила сумм d 1 d (n + 1)Im = Im (, ) (, ) - = 1 -. (13) 2 (, 0) Из формул (8)Ц(13) видно, что экранировка экситонного кулоновского взаимодействия определяется статической диэлектрической функцией (, 0) [10]. Аналогич но с учетом оператора hf i (5) в приближении второй Рис. 1. Экспериментальные результаты катодолюминесценции кумулянты можно показать, что экранировка обменкристаллов ZnSe.

ного экситонного взаимодействия является динамической [11]. Полученные результаты являются обобщением работ [1Ц3] на случай произвольного вырождения в многочастичной системе. Помимо экранирующего дей- производилась с помощью дифракционного спектрофоствия [10,11] вторая кумулянта (12) описывает много- тометра в видимой области спектра. Кристаллы ZnSe, квантовые процессы излучения и поглощения элемен- выращенные из паровой фазы, отжигались в вакууме, тарных возбуждений, частоты которых могут быть най- а также в расплавах Bi и Bi + 10-3 at.% Al при темпедены из условия обращения диэлектрической функции ратуре 1200 K в течение 120 h. Закалка осуществлялась (, ) в нуль. Динамика решетки и плазмы зонных погружением ампулы в воду. На рис. 1 представлены носителей заряда обусловливает взаимодействие эксиэкспериментальные результаты катодолюминесценции тона со смешанными плазмон-фононными модами кокристаллов ZnSe, отожженных в расплаве Bi с послелебаний [2,9]. При низких температурах (k0T LO), дующей закалкой (кривая 1), в висмуте с добавлением согласно формуле (12), LO-фононная структура спекAl [ZnSe (Bi,Al)] (кривая 2) и исходных (кривая 3).

тра излучения связанного экситона в гармоническом LO-фононные повторения линий излучения свободного приближении (диэлектрическая функция имеет полюс экситона наблюдались в кристаллах, отожженных в первого порядка в точке = LO) должна подчиняться висмуте с последующей закалкой (кривая 1), а также распределению Пуассона для интенсивностей линий.

в кристаллах [ZnSe(Bi,Al)] (кривая 2). Как видно из Форма же спектра описывается суперпозицией лоренрисунка (кривая 1), экситонные LO-фононные повтоцианов [1Ц3]. Параметры лоренцианов (константы взаирения Ex - nLO в кристаллах [ZnSe(Bi)] доминируют модействий NLO и Np, положения максимумов линий и над серией линий Id - nLO связанного на вакансии их ширины) в отличие от работ [1Ц3] вычисляются здесь Zn экситона. Взаимодействие как свободного, так и из формул (8)Ц(12), свободных от использовании модели связанного экситона с LO-фононами слабое (NLO 0.= BаньеЦМотта. Здесь определим их из сравнения теории для линии Id). Здесь NLO Ч среднее число фононов с экспериментом.

на один испущенный фотон. В кристаллах ZnSe(Bi, Al), наоборот, доминирует серия Id - nLO, а LO-фононные повторения линии излучения свободного экситона про2. Результаты эксперимента являются в виде слабых побочных полос линий Id и Id Катодолюминесценция кристаллов ZnSe возбуждалась - LO (кривая 2 на рис. 1). Это связано с ростом числа электронным пучком с энергией 40 keV при температуре вакансий Zn в кристаллах ZnSe (Bi, Al) по сравнению с образца 4.2 K. Длительность импульсов была 40 s при кристаллами ZnSe, отожженными в Bi с последующей частоте их следования 200 Hz. Регистрация спектров закалкой. Относительная интенсивность линий на рис. Физика твердого тела, 2006, том 48, вып. 1180 А.А. Клюканов, К.Д. Сушкевич, М.В. Чукичев, А.З. Ававдех, В. Гурэу, А.В. Катаной и 3 (рис. 2) труднее. Тем не менее можно предположить, что боковые полосы на кривой 2 рис. 1 являются LOфононными повторениями излучения свободного экситона, а на кривой 3 рис. 2 Ч плазмонными репликами линий Id и Id - LO. На это указывает как отличие отно1 сительных интенсивностей рассматриваемых линий, так и их спектральное положение. Плазмонные повторения, как следует из экспериментальных данных, расположены ближе к линиям Id - LO, чем экситонные. Так, линия Ex - 2LO имеет максимум при = 453 nm (кривая на рис. 1), а Id - LO - PL при 452.5nm (кривая 3 на рис. 2). двигаются в коротковолновую область спектра при неизменном положении длинноволнового края, однако при этом увеличивается и их ширина.

Следовательно, узкие боковые полосы на кривых 3 на рис. 2 и 1 являются плазмонными репликами линий Id и Id - LO.

Наиболее ярко плазмонное повторение линии Id проявляется на кривой 1 (рис. 1), где оно расположено между линиями Ex - LO и Id( p = 6meV).

При низких концентрациях взаимодействие связанного экситона с плазмой приводит к уширению линий серии Id - nLO. Если же концентрация электронов в Рис. 2. Спектр излучения исходных кристаллов ZnSe.

зоне проводимости достаточно большая для того, чтобы плазмонные повторения отделились от линий Id - nLO, происходит их сужение. В большей степени такое поведение характерно для серии Is - nLO (см. рис. 1 рабо(кривые 1 и 2) одна и та же. Спектр 2 можно получить из 1, если просто увеличить концентрацию центров Id ты [2]) и в меньше для Id - nLO. На рис. 3 представлены по отношению к концентрации излучательно рекомбинирующих свободных экситонов. Кривая 3 на рис. 2, представляющая спектр излучения исходных кристаллов ZnSe, уже не подчиняется этой закономерности. Если считать, что побочные полосы линий Id и Id - LO на 1 кривой 3 рис. 2 представляют собой одно- и двухLO-фононные повторения экситонной линии излучения Ex - LO и Ex - 2LO, то интенсивность побочной полосы Ex - 2LO ( = 452 nm) должна была бы быть в два раза больше.

В работах [3,12] боковые полосы линий Id - nLO приписывались участию в излучении акустических фононов, свободных экситонов и плазмонов. Акустические фононы сразу могут быть исключены. Действительно, акустические фононы, обусловленные динамикой решетки, должны были бы проявляться в спектрах излучения всех образцов. Тем не менее, как видно из рис. 2 (кривая 1), в некоторых из исходных образцов ZnSe боковые полосы отсутствуют. Это может быть обусловлено тем, что при низких коцентрациях плазмы свободных электронов (N < 1014 cm-3) взаимодействие с электронами зоны проводимости никак не проявляются. Различить же свободные экситоны и плазмоны гораздо сложнее.

Если участие экситонов в излучении кристаллов ZnSe, отожженных в Bi с последующей закалкой, представленном на рис. 1 (кривая 1), не вызывает сомнений, то Рис. 3. Результаты расчета спектров излучения связанных определить природу боковых полос на кривых 2 (рис. 1) экситонов в кристаллах ZnSe.

Физика твердого тела, 2006, том 48, вып. Многоплазмонные реплики полос излучения связанных экситонов в кристаллах ZnSe результаты расчета спектров излучения связанных экситонов в кристаллах ZnSe при различных значениях энергии низкочастотных плазмонов p с учетом наложения линий Is - nLO - mPl и Id - nLO - mPl, полученные 1 с помощью следующего выражения для интенсивности катодолюминесценции:

d (NLO)n (N)n p ICL(x) = I n! m! =s n,m= + m, (x + n + bm + )2 +( + m1)d - x =. (14) LO d Здесь 1 определяет положение максимума бесфононной линии Id. В зависимости от относительной интенсивности Is и Id наложение линий может про1 являться не только в области Is и Id - 2LO (456 nm, 1 x = -2) [2], но и у следующих LO-фононных повторений. Эти особенности спектров излучения находятся в согласии с экспериментом, представленном на рис. 2, кривые 1, 2 в области длин волн 456Ц472 nm. Сильное взаимодействие связанного экситона на центре Is с плазмонами (Ns > 1) приводит к уширению линий p s серии Is - nLO (NLO = 1.5, Ns = 2), на которые накла1 p дываются узкие линии Id - (n + 2)LO. Такое наложение наблюдается на рис. 2 на кривых 1 и 2. При = 461 nm имеет место суперпозиция линий Is - LO и Id - 3LO, 1 при = 467 nm накладываются друг на друга линии Is - 2LO и Id - 4LO и при = 472 nm наблюдается 1 наложение линий Is - 3LO и Id - 5LO.

Pages:     | 1 | 2 |    Книги по разным темам
м темам