Радиоматериалы и радиокомпоненты
Министерство общего и профессионального образования Российской Федерации
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ НИВЕРСИТЕТ
СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ
(ТУСУР)
Кафедра КУДР
РЕФЕРАТ
Проверил
Преподаватель кафедры КУДР
Кистенева
л сентября 2001 г.
Выполнил
студент группы 4В
Попов С. В.
л сентября 2001 г.
г. Томск
2001 г.
Содержание
TOC o "1-3" h z1. Металлы.. 3/a>
1.1 Зонная энергетическая структура металлов. 3/a>
1.2 Основные электрические параметры металлов. 5/a>
1.3 дельное сопротивление чистых металлов. 6/a>
1.4 Электрические свойства металлических сплавов. 8/a>
2.1 Функции, выполняемые диэлектриками в РЭА.. 10/a>
2.3 Диэлектрические потери. 12/a>
3.1. Классификация веществ по магнитным свойствам.. 14/a>
3.2. Классификация магнитных материалов. 15/a>
3.3.1 Особенности ферримагнетиков. 16/a>
3.4 Природа обменного взаимодействия. 17/a>
3.5 зависимость магнитных свойств от температуры.. 19/a>
1. Металлы
1.1 Зонная энергетическая структура металлов
Чтобы понять, почему металлы обладают значительной проводимостью, намного большей, чем проводимость диэлектриков и полупроводников, следует рассмотреть какова структура их энергетических зон.
В изолированном атоме имеется ряд разрешённых ровней энергии, которые могут быть лзаселены электронами (рис. 1.1, а). Если атомов много, но они далены на достаточно большие расстояния друг от друга, структура энергетических ровней не изменяется, электроны по-прежнему оказываются локализованными вблизи своих ядер. При конденсации вещества и при образовании кристаллической решётки твёрдого тела все имеющиеся у атомов данного типа электронные ровни (как заполненные электронами, так и незаполненные) несколько смещаются вследствие воздействия соседних атомов друг на друга. В частности, притяжение электронов одного атома ядром соседнего снижет высоту потенциального барьера, разделяющего электроны в уединённых атомах. Главное состоит в том, что при сближении атомов происходит перекрытие электронных оболочек, это в свою очередь существенно изменяет характер движения электронов. Благодаря перекрытию оболочек электроны могут без изменения энергии посредством обмена переходить от одного атома к другому, то есть перемещаться по кристаллу. Обменное взаимодействие имеет чисто квантовую природу и является следствием неразличимости электронов. В этом случае же нельзя говорить о принадлежности того или иного электрона определённому атому - каждый валентный электрон всем атомам кристаллической решётки одновременно. Иными словами, при перекрытии электронных оболочек происходит обобществление электронов.
Вследствие обменного взаимодействия дискретные энергетические ровни изолированного атома расщепляются в энергетические зоны (рисунок 1.1, б). Разрешенные энергетические зоны разделены запрещёнными интервалами энергии (запрещёнными зонами - ЗЗ). Уровни энергии внутренних оболочек, которые локализованы вблизи ядра и не подвержены сильному возмущению со стороны окружающих атомов, расщепляются меньше, чем ровни валентных (внешних) электронов.
2. Диэлектрики
2.1 Функции, выполняемые диэлектриками в РЭА
Диэлектрики имеют чрезвычайно большое значение для радиоэлектронной техники. Теоретические вопросы, связанные со строением диэлектриков с точки зрения зонной теории, были рассмотрены в пункте 1.1. В простейших случаях своего применения, диэлектрики используются в качестве электроизоляционных материалов. Назначение электрической изоляции сводится к тому, чтобы воспрепятствовать прохождению электрического тока по путям, нежелательным для работы данной электрической схемы. Однако, помимо пассивных, изолирующих функций, некоторые виды диэлектриков выполняют активные функции, порой более сложные, чем полупроводниковые материалы. Дадим некоторый (не полный) перечень функций, выполняемых диэлектриками в РЭА и элементов, в которых они используются.
Пассивные функции
1) Электроизоляция проводников тока;
2) Поляризационно - изорирующая межобкладочная среда конденсаторов;
3) Подзатворная изоляция полевых транзисторов;
4) связующая среда магнитодиэтектриков;
ктивные функции
5) Вариконды, датчики температуры, нелинейные усилительные элементы (на основе сегнетоэлектриков);
6) Пьезоэлектрические генераторы, резонаторы, трансформаторы. Элементы акустоэлектроники (на основе пьезоэлектриков, акустооптических материалов);
7) Источники постоянного электрического поля (на основе электретов);
8) Электролюминофоры, фотолюминофоры, сцинтилляторы;
9) Модуляторы света;
10) Оптические запоминающие стройства;
11) Индикаторы (на основе жидких кристаллов);
12) Рабочие оптические лазерные среды.
2.2 Виды поляризаций
Свободные заряды - заряды способные двигаться под действием электрического поля на расстояния, намного превышающие межатомные.
Связанные заряды - заряды, смещающиеся под действием электрического поля на расстояние, соизмеримые, или меньшие, чем межатомные расстояния.
Поляризация - направленное перемещение в материале большого количества связанного заряда на ничтожно малые расстояния, соизмеримые, или меньшей, чем межатомные расстояния.
Физически процесс поляризации может протекать по-разному и сопровождаться различными явлениями, поэтому, с чётом физических тонкостей поляризацию разделяют на виды и классы (рисунок 2.1). Принципиальные отличия пругих и неупругих видов поляризации отображены в таблице 2.1. Спонтанная поляризация - относительно редкое и никальное явление, свойственное некоторым кристаллическим диэлектрикам. В отличие от остальных видов поляризации, пругих и неупругих, спонтанная поляризация обладает свойством нелинейности.
ПОЛЯРИЗАЦИИ
3. Магнитные материалы.3.1. Классификация веществ по магнитным свойствам По реакции на внешнее магнитное поле и характеру внутреннего магнитного порядочения все вещества в природе можно подразделить на пять групп:а диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики. Перечисленным видам магнетиков соответствуют пять различных видов магнитного состояния вещества: диамагнетизм, парамагнетизм, ферромагнетизм, антиферромагнетизм и ферримагнетизм. К диамагнетикама относят вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряженности внешнего магнитного поля. К диамагнетикам относятся инертные газы, водород, азот, многие жидкости (вода, нефть и ее производные), ряд металлов (медь, серебро, золото, цинк, ртуть, галлий и др.), большинство полупроводников (кремний, германий, соединения АВ5, АВ6) и органических соединений, щелочно-галоидные кристаллы, неорганические стекла и др. Диамагнетиками являются все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии. К парамагнетикам относят вещества с положительной магнитной восприимчивостью, не зависящей от напряженности внешнего магнитного поля. К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы, соли железа, кобальта, никеля и редкоземельных элементов. К ферромагнетикам относят вещества с большой положительной магнитной восприимчивостью (до 106), которая сильно зависит от напряженности магнитного поля и температуры. нтиферромагнетиками являются вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. При нагревании антиферромагнетик испытывает фазовый переход в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Ce, Nd, Sm, Tm и др.). Типичными антиферромагнетиками являются простейшие химические соединения на основе металлов переходной группы типа окислов, галогенидов, сульфидов, карбонатов и т.п. К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от напряженности магнитного поля и температуры. Наряду с этим ферримагнетики характеризуются и рядом существенных отличий от ферромагнитных материалов. Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом, - различные оксидные соединения, среди которых наибольший практический интерес представляют ферриты. 3.2. Классификация магнитных материалов Применяемые в электронной технике магнитные материалы подразделяют на две основные группы: магнитотвердые и магнитомягкие. В отдельную группу выделяют материалы специального назначения. К магнитотвердым относят материалы с большой коэрцитивной силой Нс. Они перемагничиваются лишь в очень сильных магнитных полях и служат для изготовления постоянных магнитов. К магнитомягким относят материалы с малой коэрцитивной силой и высокой магнитной проницаемостью. Они обладают способностью намагничиваться до насыщения в слабых магнитных полях, характеризуются зкой петлей гистерезиса и малыми потерями на перемагничивание. Магнитомягкие материалы используются в основном в качестве различных магнитопроводов: сердечников дросселей, трансформаторов, электромагнитов, магнитных систем электроизмерительных приборов и т. п. Условно магнитомягкими считают материалы, у которых Нс < 800 А/м, магнитотвердыми - с Нс > 4 кА/м. Необходимо, однако, отметить, что у лучших магнитомягких материалов коэрцитивная сила может составлять менее 1 А/м, лучших магнитотвердых материалах ее значение превышает 500 кА/м. По масштабам применения в электронной технике среди материалов специального назначения следует выделить материалы с прямоугольной петлей гистерезиса (ППГ), ферриты для стройств сверхвысокочастотного диапазона и магнитострикционные материалы. Внутри каждой группы деление магнитных материалов по родам и видам отражает различия в их строении и химическом составе, учитывает технологические особенности и некоторые специфические свойства. Свойства магнитных материалов определяются формой кривой намагничивания и петли гистерезиса. Магнитомягкие материалы применяются для получения больших значений магнитного потока. Величина магнитного потока ограничена магнитным насыщением материала, потому основным требованием к магнитным материалам сильноточной электротехники и электроники является высокая индукция насыщения. Свойства магнитных материалов зависят от их химического состава, от чистоты используемого исходного сырья и технологии производства. В зависимости от исходного сырья и технологии производства магнитомягкие материалы делятся на три группы: монолитные металлические материалы, порошковые металлические материалы (магнитодиэлектрические) и оксидные магнитные материалы, кратко называемые ферритами.
3.3 Ферриты
Ферриты представляют собой химические соединения, в общем случае имеющие формулу МFe2O4, где М - чаще всего двухвалентный ион металла, например, Cu, Zn, Mg, Ni, Fe, Co и Mn. В отличие от порошковых сердечников ферриты представляют собой монолитные материалы. Магнитомягкие ферриты кристаллизуются в кубической системе и имеют структуру шпинели - минерала состава MgAl2O4. Чаще всего применяются ферриты следующих типов: MnO*ZnO x 2Fe2O3 - марганцево-цинковый феррит; Nio*ZnO x 2Fe2O3 - никель-цинковый феррит; MgO*MnO*2Fe2O3 - магний-марганцевый феррит. Ферриты имеют высокое дельное электрическое сопротивление порядка 10-109 Ом*см и благодаря этому низкие потери на вихревые токи. Индукция насыщения составляет приблизительно 20-25% от индукции насыщения железа. Ферриты делятся на три подгруппы: ) ферриты с гарантированными потерями и проницаемостью; б) ферриты с прямоугольной петлей гистерезиса; в) ферриты со специальными свойствами. Марганец-цинковые ферриты по сравнению с никель-цинковыми имеют меньшие потери. Оба эти вида ферритов относятся к первой подгруппе. Т.к. никель-цинковые ферриты имеют более высокое электрическое сопротивление, то их целесообразно применять в области частот от 500 кГц до 200 Гц и выше, т.е. для цепей высокочастотной техники. Магний-цинковые ферриты предназначены для применения в диапазоне от звуковых частот до нескольких Гц. Ферриты с прямоугольной петлей гистерезиса бывают никель-цинковыми или магний-марганцевыми. В технике КВ также применяются магний-марганцевые ферриты, однако соотношение отдельных составных частей в тройной системе отличается от состава магний-марганцевых ферритов с прямоугольной петлей гистерезиса. Эти ферриты вместе с магнитострикционными материалами относятся к группе материалов со специальными свойствами. Благодаря своим свойствам, ферриты имеют очень широкий диапазон применения. В настоящее время ферриты применяются в производстве реле,сетевых трансформаторов стройств связи, дросселей, электромеханических преобразователей и резонаторов и т.п. Однако наибольшее распространение ферриты получили в производстве сердечников для катушек (феррокатушек), запоминающих и переключающих цепей и т.п. 3.3.1 Особенности ферримагнетиковСтроение ферримагнетиков. Ферримагнетики получили свое название от ферритов, под которыми понимают химические соединения окисла железа Fe2O3 с окислами других металлов. В настоящее время используют сотни различных марок ферритов, отличающихся по химическому составу, кристаллической структуре, магнитным, электрическим и другим свойствам. Наиболее широкое применение нашли ферриты со структурой природного минерала шпинели. Химический состав ферритов-шпинелей отвечает формуле МеFe2O4, где под Ме понимают какой-либо двухвалентный катион. На примере этих соединений рассмотрим наиболее характерные особенности магнитных свойств ферримагнетиков. Исследования показывают, что наличие или отсутствие магнитных свойств определяется кристаллической структурой материалов и, в частности, расположением ионов двухвалентных металлов и железа между ионами кислорода. Элементарная ячейка шпинели представляет собой куб, в состав которого входит восемь структурных единиц типа МеFe2O4, т.е. 32 иона кислорода, 16 ионов трехвалентного железа и 8 ионов двухвалентного металла. Кислородные ионы расположены по принципу плотной кубической паковки шаров. При этом возникают междуузлия двух типов: тетраэдрические, образованные окружением четырех ионов, и октаэдрические, образованные окружением шести ионов кислорода. В этих кислородных междуузлиях находятся катионы металлов. Всего в элементарной ячейке шпинели может быть заполнено 8 тетраэдрических промежуткова (назовем их позициями типа А) и 16 октаэдрических мест (позиции типа В). Структуру, в которой все катионы двухвалентного железа занимают позиции типа А, катионы трехвалентного железа распределяются в междуузлиях типа В, называют нормальной шпинелью. учитывая такой характер распределения катионов по кислородным междуузлиям, формулу феррита со структурой нормальной шпинели можно представить в следующем виде: (Мe2+)[Fe3+Fe3+]O4 где в круглых скобках казаны ионы, занимающие позиции типа А, в квадратных - ионы в позициях типа В. Стрелками условно показано направление магнитных моментов катионов. В структуре нормальной шпинели кристаллизуются ферриты цинка (ZnFe2O4) и кадмия (CdFe2O4). Как будет показано далее, ферриты со структурой нормальной шпинели немагнитны. Чаще встречаются ферриты с иным характером распределения катионов по кислородным междуузлиям. Структура, в которой катионы Ме2+ находятся в позициях типа В, катионы трехвалентного железа поровну распределяются между позициями А и В, получила название обращенной шпинели. Формулу обращенной шпинели с четом распределения катионов можно записать в виде: (Fe3+)[Me2+Fe3+]O4 Структуру обращенной шпинели имеют ферриты никеля, кобальта, меди и некоторых других элементов. Большинство реальных ферритов характеризуется некоторым промежуточным распределением катионов, когда и ионы Ме2+, и ионы трехвалентного железа Fe3+ занимают позиции того и другого типов. Такие структуры называют амфотерной шпинелью. Промежуточному распределению катионов соответствует структурная формула (Me2+1-x Fe3+x)[Me2+x Fe3+1-x]O4 где параметр х характеризует степень обращенности шпинели. Структуре нормальной и обращенной шпинели отвечают значения х, равные, соответственно, нулю и единице. Природа магнитного порядочения. В ферритах магнитоктивные катионы находятся достаточно далеко друг от друга, поскольку разделены анионами кислорода, не обладающими магнитным моментом. Поэтому прямое обменное взаимодействие между катионами оказывается очень слабым или отсутствует вообще. Их электронные оболочки практически не перекрываются. 3.4 Природа обменного взаимодействия Элементы с недостроенными внутренними оболочками называются переходными. На рисунке 3.1 схематично показана структура атома железа, который содержит 26 электронов в четырёх оболочках. Цифры казывают количество электронов на подоболочках, направления спинов словно обозначены л+ и л-. На внешней 4s-оболочке находится два электрона со спинами, имеющими противоположное направление (спины скомпенсированы). Однако на внутренней подоболочке 3d находится шесть электронов, из них у четверых электронов спины не скомпенсированы. Иными словами, эта подоболочка является недостроенной. Между соседними атомами возникает обменное взаимодействие, характеризуемое значением интеграла обменной энергии. Оказывается, что величина и знак обменной энергии А зависит от отношения расстояния между атомами к радиусу незаполненной оболочки (рисунок 3.2). схематичный график зависимости А(a/r) показан на рисунке 3.3. различные частки этой зависимости характеризуют резко различающиеся друг от друга состояния магнитных сред, рассмотрены ниже. 1) Ферромагнитное состояние. Интеграл обменной энергии положителен лишь при a/r > 3.2. Этому соотношению отвечают кристаллы элементов Gd, Dy, Ho, Er,Tb, Tm. Положительный знак обменной энергии означает, что энергетически выгодным состоянием для системы является такое, при котором электронные спины незавершённых оболочек соседних атомов одинаково направлены (имеют одинаковый знак проекций спина на выделенную пространственную ось). Магнетики, обладающие таким свойством называются ферромагнетиками. Распространяя это свойство на каждую пару атомов, можно прийти к выводу, что спины электронов на незавершённых внутренних оболочках у всех атомов вещества стремятся сориентироваться в одном направлении, и при этом достигается минимум энергии тела. 1s 2s 2p 3s 3p 3d 4s
|