Скачайте в формате документа WORD

Расчёт волновой функции в квантовой яме сложной формы

Ìèíèñòåðñòâî îáðàçîâàíèÿ Ðîññèéñêîé Ôåäåðàöèè

Ñàíêò-Ïåòåðáóðãñêèé ãîñóäàðñòâåííûé ïîëèòåõíè÷åñêèé óíèâåðñèòåò

Ðàñ÷¼òíî-ãðàôè÷åñêàÿ ðàáîòà

ïî ïðåäìåòó ¾Îïòîýëåêòðîíèêà è êâàíòîâûå ïðèáîðû¿

Àâòîð: Êîðèêîâ Êîíñòàíòèí Êîíñòàíòèíîâè÷ Ãðóïïà: 3093/2 Ôàêóëüòåò: Ðàäèîôèçè÷åñêèé Ïðåïîäàâàòåëü: Êóçüìèí Þðèé Èãîðåâè÷

Ñàíêò-Ïåòåðáóðã 2010

Îãëàâëåíèå

1 Òåõíè÷åñêîå çàäàíå 2 2 Àíàëèç 3 3 Ðàñ÷¼ò 6 4 Ëèòåðàòóðà 14

Òåõíè÷åñêîå çàäàíå

Íàéòè ýíåðãèè è âîëíîâûå ôóíêöèè òðåòüåãî è ÷åòâåðòîãî ñòàöèîíàðíûõ ñîñòîÿíèé ýëåêòðîíà â ïîòåíöèàëüíîé ÿìå ñëåäóþùåãî âèäà:


3a

U (x)→∞, ïðè x

| |≥ 2


a 3a

U (x)=0, ïðè < |x|<

22

a

U (x)=4U0, ïðè |x|<

2

π22

Çäåñü Uo = 2ma2.

Ïîñòðîèòü ãðàôèêè âîëíîâûõ ôóíêöèé ýòèõ ñîñòîÿíèé. Âû÷èñëèòü âåðîÿòíîñòè îáíàðóæåíèÿ ýëåêòðîíà â êàæäîì èç ñåêòîðîâ ÿìû äëÿ óêàçàííûõ ñîñòîÿíèé.

Ðèñ. 1: Ïîòåíöèàëüíîå ïîëå

Àíàëèç

Êàê èçâåñòíî èç ñëåäñòâèé Ëàãðàíæåâîé ìåõàíèêè [2], äèíàìèêó ëþáîé ìåõàíè-÷åñêîé ñèñòåìû ìîæíî îõàðàêòåðèçîâàòü ôóíêöèåé Ãàìèëüòîíà. Àíàëîãîì äàííîé

ˆ

ôóíêöèè â êâàíòîâîé òåîðèè ñëóæèò îïåðàòîð H(Ãàìèëüòîíèàí) [3]. Ïðè ýòîì ñîñòîÿíèå ôèçè÷åñêîé ñèñòåìû â êâàíòîâîé ìåõàíèêå îïèñûâàåò âîëíîâàÿ ôóíêöèÿ Ψ(r, t) [3], êîòîðàÿ â ñâîþ î÷åðåäü îïðåäåëÿåòñÿ âîëíîâûì óðàâíåíèåì Øð¼äèíãå-ðà [4]:

i Ψ(r, t)= ˆ

HΨ(r, t) (1)

∂t

Ãàìèëüòîíèàí âûðàæàåòñÿ ñóììîé îïåðàòîðîâ êèíåòè÷åñêîé è ïîòåíöèàëüíîé ýíåðãèé ýëåêòðîíà â ïîòåíöèàëüíîì ïîëå [3]:

H =T +ˆ

ˆˆU

22

mvm (mv)2 p

E = ==

2 · m 2m 2m ⇒ p)2 2 2 2

Tˆ=<={pˆ==Δ

2m −i} =− 2m− 2m ˆ

U =U(r)

2

ˆ

H =Δ+U(r)

− 2m

Ðàçäåëèì ïåðåìåííûå, âîñïîëüçîâàâøèñü ìåòîäîì Ôóðüå:

Ψ(r, t)=f(r)(t)

2

1

t)= ˆ

Hf(

if(r)

(

r)(t)=(t)Δf(r)+U(r)f(r)

− 2m

∂t

f(r)(t)

i ∂ 1

2

(t)= Δf(r)+U(r)f(r) (2)

(t)∂t f(r) − 2m

Ïîñêîëüêó ëåâàÿ ÷àñòü óðàâíåíèÿ (2) çàâèñèò òîëüêî îò t, à ïðàâàÿ  òîëüêî îò r, îáå îíè äîëæíû ðàâíÿòüñÿ îäíîé è òîé æå êîíñòàíòå ðàçäåëåíèÿ:

i ∂

E = (t)

(t)

∂t

2

1

E =

Δf(r)+U(r)f(r)

f(r) − 2m

 ïîñòàâëåííîé çàäà÷å òðåáóåòñÿ îïðåäåëèòü õàðàêòåðèñòèêè ñèñòåìû â ñòàöèîíàðíûõ ñîñòîÿíèÿõ, ïîýòîìó ïðàêòè÷åñêèé èíòåðåñ ïðåäñòàâëÿåò ëèøü ðåøåíèå âòîðîãî óðàâíåíèÿ èç äàííîé ñèñòåìû, ñîäåðæàùåãî ðàñïðåäåëåíèå àìïëèòóäû âîëíîâîé ôóíêöèè.

2

Δf(r)+U(r)f(r)=Ef(r)

− 2m

2 ∂2

Ñ ó÷¼òîì òîãî, ÷òî ïîòåíöèàëüíîå ïîëå îäíîìåðíî (r =x è Δ== ∂x2 ):

2 2 f(x)+U(x)f(x)=Ef(x) (3)

2m ∂x2

ˆ

Hf(x)

3

Òàêèì îáðàçîì, ðåøåíèå ñâåëîñü ê èçâåñòíîé â ìàòôèçèêå [1] çàäà÷å íà ñîáñòâåí íûå çíà÷åíèÿ (â îäíîìåðíîì ñëó÷àå: çàäà÷à Øòóðìà  Ëèóâèëëÿ).

2 2 f (x) = E U (x) f (x)

− 2m ∂x2 2 2m ∂x2 f (x) = 2 E U (x) f (x)

2 2m

∂x2 f (x) + 2 E U (x) f (x) = 0

(4)

 êâàíòîâîé ìåõàíèêå íà âîëíîâóþ ôóíêöèþ èç ôèçè÷åñêèõ ñîîáðàæåíèé íà êëàäûâàþò äîïîëíèòåëüíûå óñëîâèÿ [4]:

Óñëîâèå íîðìèðîâêè

+

|Ψ (x, t)2 dx = 1 (5)

|

−∞

Íåïîñðåäñòâåííûì èíòåãðèðîâàíèåì îïðåäåëèì âèä ôóíêöèè (t):

i ∂ ∂t (t) ∂t(t) = E |· i

∂(t) E

= ∂t

(t) iE

ln((t)) = t + C1 i

E iE

(t) = exp t exp C1 = C2 exp t

i−

Ïîñòîÿííóþ èíòåãðèðîâàíèÿ ìîæíî âûáðàòü òàêèì îáðàçîì, ÷òîáû ôóíêöèÿ Ψ (x, t) áûëà íîðìèðîâàííàÿ.

++

|Ψ (x, t)2 dx = |f (x)(t)2 dx = 1

||

−∞ −∞ ++

iE iE

|f (x)(t)2 dx = f (x)|2 exp t exp t dx = 1

||−

−∞ −∞ +

|f (x)2 dx = 1 (6)

|

−∞

Óñëîâèå ðåãóëÿðíîñòè

  1. Âîëíîâàÿ ôóíêöèÿ íå ìîæåò ïðèíèìàòü áåñêîíå÷íûõ çíà÷åíèé, òàêèõ, ÷òî èíòåãðàë (6) ñòàíåò ðàñõîäÿùèìñÿ.
  2. Âîëíîâàÿ ôóíêöèÿ äîëæíà áûòü îäíîçíà÷íîé ôóíêöèåé êîîðäèíàò è âðåìåíè, òàê êàê ïëîòíîñòü âåðîÿòíîñòè îáíàðóæåíèÿ ÷àñòèöû äîëæíà îïðåäåëÿòüñÿ îäíîçíà÷íî.
  3.  ëþáîé ìîìåíò âðåìåíè âîëíîâàÿ ôóíêöèÿ è å¼ ÷àñòíûå ïðîèçâîäíûå äîëæíû áûòü íåïðåðûâíûìè ôóíêöèÿìè ïðîñòðàíñòâåííûõ êîîðäèíàò.

 ïîñòàâëåííîé çàäà÷å ïîòåíöèàëüíîå ïîëå (êâàíòîâàÿ ÿìà) àíàëèòè÷åñêè îïèñûâàåòñÿ ôóíêöèåé U (x), èìåþùåé ñèììåòðèþ îòíîñèòåëüíî çàìåíû x íà x:

U (x)=U (x)

Ïðè íàëè÷èè èíâåðñèè ñîáñòâåííûå ôóíêöèè îïåðàòîðà Ãàìèëüòîíà ëèáî àâòî-ìàòè÷åñêè èìåþò îïðåäåë¼ííóþ ÷¼òíîñòü, ëèáî ìîãóò áûòü ïðåîáðàçîâàíû â ôóíê öèè, èìåþùèå îïðåäåë¼ííóþ ÷¼òíîñòü [3].

Ðåçþìå

  1. Ðåøåíèå çàäà÷è ñâîäèòñÿ ê ðåøåíèþ çàäà÷è Øòóðìà  Ëèóâèëëÿ.
    1. Ðåøåíèåì ÿâëÿþòñÿ ñîáñòâåííûå ôóíêöèè f (x) è ñîáñòâåííûå çíà÷åíèÿ E ˆ
    2. (ýíåðãèè) îïðåðàòîðà Ãàìèëüòîíà H.
  2. Îäíîðîäíûå ãðàíè÷íûå óñëîâèÿ çàäà÷è Øòóðìà  Ëèóâèëëÿ îïðåäåëÿþòñÿ èç ôîðìû ïîòåíöèàëà.
  3. Ñîáñòâåííûå ôóíêöèè f (x)îáëàäàþò îïðåäåë¼ííîé ÷¼òíîñòüþ â òîì èëè èíîì ñòàöèîíàðíîì ñîñòîÿíèå.
  4. Ðåøàòü çàäà÷þ ìîæíî íà ïîëîâèíå èíòåðâàëà, ïåðåíîñÿ ðåøåíèÿ íà îñòàâøóþñü ÷àñòü ñ ïîìîùüþ ñèììåòðèè.
  5. Íà ôóíêöèè f (x)íàêëàäûâàþòñÿ óñëîâèÿ ðåãóëÿðíîñòè è íåïðåðûâíîñòè â ëþáîì ñòàöèîíàðíîì ñîñòîÿíèå.

3 Ðàñ÷¼ò

3a

Ïðîàíàëèçèðóåì ïîâåäåíèå ôóíêöèè f (x) â òî÷êàõ ñèíãóëÿðíîñòè x =±:

2

2 2m

∂x2 f (x)+ 2 E U (x) f (x)=0

2 2m

∂x2 f (x)2 U (x)Ef (x)=0

def 2 def 2m

y = f (x);U (x)→∞;æ = 2 E U (x)

2

y æ y =0

kx

Ðåøåíèå â âèäå y =e kx :k2 e æ 22e kx =0k2 æ 2 =0k =æ

⇒±

y =C1e æx

+C2e−æx

Èç óñëîâèÿ ðåãóëÿðíîñòè y :C1 0y =C2e−æx ò.ê. U (x)→∞⇒æ→∞⇒y 0

3a

f =0

(7)

±2

Ðàññìîòðèì ðåøåíèå óðàâíåíèÿ âèäà:

y +α2 y =02y (8)

2yy +2α2 yy =0

22

(y) +α2(y ) =0

22

(y)+α2 y =0

2 22

(y)+α2 y =c1

y =c1 α2y2 dx

± 2

dy =c1 α2y2dx

± 2

dy

=dx

2

1 α2y2 ±

1 dy

=dx 1 1(α )y)2 ±

c1

1 c1 α

arcsin y =x +c2

1 αc1 ±1

y = sin(±αx +αc2)y =A sin(αx +)

α

Ðàññìîòðèì ðåøåíèå óðàâíåíèÿ âèäà:

y α2 y = 0 (9)

kx

Ðåøåíèå â âèäå y = e kx : k2 e α22e kx = 0 k2 α2 = 0 k = ±α αx + C2eαx

y = C1e

x

e = sh(x) + ch(x) y = C1 sh(αx) + C1 ch(αx) + C2 sh(αx) + C2 ch(αx) y = (C1 C2) sh(αx) + (C1 + C2) ch(αx) = A sh(αx) + B ch(αx)

Óðàâíåíèå (4) äëÿ ó÷àñòêà 0 < x < a :

2

2 2m

U (x) Ef (x) = 0

∂x2 f (x) 2

def

=

1 = f (x); U (x) = 4U0; κ2 def 2m 4U0 E

2

1 κ2 y1 = 0

y

Ïîëó÷åííîå óðàâíåíèå òèïà (9), îáùåå ðåøåíèå: y1 = A sh(κx) + B ch(κx) Åñëè f (x) ÷¼òíàÿ: y1(0) = 0; åñëè f (x) íå÷¼òíàÿ: y1(0) = 0

f (x) ÷¼òíàÿ:

y= Aκ ch(κx) + Bκ sh(κx)

1 1(0) = Aκ = 0 ò.ê. κ = 0 A = 0

1 = B ch(κx)

(10)

f (x) íå÷¼òíàÿ:

y1(0) = B = 0

1 = A sh(κx)

(11)

a 3a

Óðàâíåíèå (4) äëÿ ó÷àñòêà 2 < x < :

2

2 2m

∂x2 f(x) + 2 E U(x) f(x) = 0

def

2 = f(x); U(x) = 0; γ2 def 2mE

=

2

2+ γ2 y2 = 0

Ïîëó÷åííîå óðàâíåíèå òèïà (8), îáùåå ðåøåíèå: y2 = Dsin(γx+ D)

3a 3a

Èç êðàåâûõ óñëîâèé: y2 = Dsin γ + D = 0

± 2 ± 2 3a

γ + D+ = πn,n Z

2 3a

γ + D= πn,n Z

2 − 3a

D+ = πnγ,n Z

2 3a

D= πn+ γ,n Z

− 2

3a

2 = Dsin γx+ πn± γ,n Z

(12)

2

Òàêèì îáðàçîì, Ψ(x) ïðèìåò âèä:


3a a 3a

y2+ = Dsin γx+ πn,n Z, ïðè < x <

22

2

aa

y1+ = Bch(κx), ïðè

2 ≤ x ≤ 2 3a 3aa

y2+ = Dsin γx++ πn,n Z, ïðè < x <

2 22


3a a 3a

y2= Dsin γx2+ πn,n Z, ïðè < x <

22

aa

y1= Ash(κx), ïðè

2 ≤ x ≤ 2 3a 3aa

y2= Dsin γx++ πn,n Z, ïðè < x <

− 2 22

Èç óñëîâèé ðåãóëÿðíîñòè f(x) âûòåêàþò ñëåäóþùèå ñîîòíîøåíèÿ:

+ f(x) ÷¼òíàÿ:

aa

1 = y2

22

a

B ch κ = D sin γa 3a <+ πn, n Z

22

aa

y= y

1

2 2 2

a

Bκ sh κ = Dγ cos γa 3a <+ πn, n Z

22

a

κ th κ = γ ctg γa 3a <+ πn, n Z a

22 |·

a

κa th κ = γa ctg γa

2

Äëÿ óäîáñòâà ðåøåíèÿ äàííîãî òðàíñöåíäåíòíîãî óðàâíåíèÿ ââåä¼ì ïåðåìåííûå:

ξ = κa; η = γa

ξ

ξ th = η ctg(η) (13)

2

f(x) íå÷¼òíàÿ:

aa

1 = y2

22

a

A sh κ = D sin γa 3a <+ πn, n Z

22

aa

y= y

1

2 2 2

a

Aκ ch κ = Dγ cos γa 3a <+ πn, n Z

22

a

κ cth κ = γ ctg γa 3a <+ πn, n Z a

22 |·

a

κa cth κ = γa ctg γa

2

Äëÿ óäîáñòâà ðåøåíèÿ äàííîãî òðàíñöåíäåíòíîãî óðàâíåíèÿ ââåä¼ì ïåðåìåííûå:

ξ = κa; η = γa

ξ

ξ cth = η ctg(η) (14)

2

9

Äëÿ ðåøåíèÿ (13) è (14) ðàññìîòðèì åù¼ îäíî óðàâíåíèå:

2(γ2

2 + ξ2 = (γa)2 + (κa)2 = a + κ2) 2m 2m 8m

2 + κ2 = E + 2 4U0 E = U0

2 2 2

8m 8mπ22 2

0 = ==

2

2 2 2ma2 aa

2

2

2 + ξ2 = a = (2π)2

a

ξ = (2π)2 η2 (15)

±

Ïîäñòàâèì (15) â (13)è (14):

(2π)2 η2 th (2π)2 η2 <= η ctg(η) (÷¼òíûå ðåøåíèÿ)

2

(2π)2 η2 cth (2π)2 η2 <= η ctg(η) (íå÷¼òíûå ðåøåíèÿ)

2

Ðèñ. 2: Ðåøåíèå òðàíñöåíäåíòíûõ óðàâíåíèé

Ðåøàÿ ãðàôè÷åñêè òðàíñöåíäåíòíîå óðàâíåíèå, íàõîäèì ñîáñòâåííûå çíà÷åíèÿ:

η

η = γa γ =

⇒ a

2

η 2m

= E

a 2

2 η2 E =

(16)

2ma2

ξ = κa = (2π)2 η2

(2π)2 η2

κ =

a

x

Ââåä¼ì íîðìèðîâàííóþ êîîðäèíàòó z = a è îïðåäåëèì âèä ñîáñòâåííûõ ôóíêöèé f(z):

3

13

,n Z, ïðè < z <

2

= Dsin η + πn

z

y2+

2

2


11

(2π)2 η2z), ïðè

2 ≤ z

= Bch(

y1+

2

3

31

,n Z, ïðè < z <

2

= Dsin ηz ++ πn

2

y2+

2

3

13

,n Z, ïðè < z <

2

= Dsin η + πn

z

y2

2

2


11

(2π)2 η2z), ïðè

2 ≤ z

= Ash(

y1

2

3

31

,n Z, ïðè < z <

2


= Dsin ηz ++ πn

2

y2

2

Èç óñëîâèÿ íîðìèðîâêè îïðåäåëèì êîíñòàíòû A, B è D, äëÿ óäîáñòâà âçÿâ ñèñòåìó ñ n = 0:

3

1

1

2

22

2

2

2

3

3

(2π)2 η2

Dsin η

dz +

Bch(

z) dz +

Dsin η

dz = 1

z +

z

2

2

3

2

1

1 2

2

3

1

1

2

22

2

2

2

3

3

(2π)2 η2

Dsin η

dz +

Ash(

z) dz +

Dsin η

dz = 1

z +

z

2

2

3

2

1

1

2

2

2

1

2

sh( (2π)2 η2) + = 1

2

+

2 (2π)2 η2 2

1

2

ch( (2π)2 η2) = 1

+

2

2 (2π)2 η2

Èñïîëüçóÿ óðàâíåíèÿ íåïðåðûâíîñòè, ïîëó÷àåì ñèñòåìó äëÿ ÷¼òíûõ ðåøåíèé:

2

1

2

+ sh( (2π)2 η2) + = 1

2

η2 Bch (2π)2 η2 <= Dsin(η)2

(2π)22

È äëÿ íå÷¼òíûõ ðåøåíèé:

2

1

2

+ ch( (2π)2 η2) = 1

2

η2 Ash (2π)2 η2 <= Dsin(η)2

11

(2π)22

×èñëåííîå ðåøåíèå

1. ×¼òíîå ðåøåíèå:

3 = 5.261

2. Íå÷¼òíîå ðåøåíèå:

4 = 5.308

3. Ýíåðãèè òðåòüåãî è ÷åòâåðòîãî ñòàöèîíàðíûõ ñîñòîÿíèé ýëåêòðîíà â ïîòåíöèàëüíîé ÿìå:

2 η22

3

3 == U0 = 2.804 · U0

2

2ma2 ·

2 η22

4

4 == U0 = 2.855 · U0

2

2ma2 π·

4. Âîëíîâûå ôóíêöèè:

3 :


3 13

=

0.911 sin 5.261 z, ïðè <

22

y

2+

2


11

1+ = 0.270 ch(3.435z), ïðè

y2 ≤ z≤ 2 3 31

y2+ = 0.911 sin 5.261 z+, ïðè <

2 22

4 :


3 13

y2= 0.909 sin 5.308 z, ïðè <

− 2 22


11

= 0.290 sh(3.361z), ïðè

y1− 2 ≤ z≤ 2 3 31

y2= 0.909 sin 5.308 z+, ïðè <

− 2 22

5. Âåðîÿòíîñòü íàõîæäåíèÿ ÷àñòèöû â ñåêòîðàõ ÿìû:

3 :

3

1

22

|f(z)2 dz= |f(z)2 dz= 0.450

||

1

2

3

2

1

2

0

|f(z)2 dz= |f(z)2 dz= 0.101

||

0

1

2

4 :

3 1

|f (z)2 dz = |f (z)2 dz = 0.449

||

1

2

3 2 − 1

2

0

|f (z)2 dz = |f (z)2 dz = 0.069

||

0

1 2 Ãðàôèêè âîëíîâûõ ôóíêöèé: 3: 3 ñòàöèîíàðíîå ñîñòîÿíèå 4: 4 ñòàöèîíàðíîå ñîñòîÿíèå

13

Ëèòåðàòóðà

[1] Â.Ñ. Âëàäèìèðîâ. Óðàâíåíèÿ ìàòåìàòè÷åñêîé ôèçèêè.Ì.: Íàóêà, 1988.

[2] Ëàíäàó Ë.Ä., Ëèâøèö Å.Ì. Òåîðåòè÷åñêàÿ ôèçèêà: Ìåõàíèêà: â 10 ò.Ì.: Íàóêà, 1988.

[3] Ëàíäàó Ë.Ä., Ëèâøèö Å.Ì. Òåîðåòè÷åñêàÿ ôèçèêà: Êâàíòîâàÿ ìåõàíèêà (íåðåëÿòèâèéñêàÿ òåîðèÿ): â 10 ò.Ì.: Íàóêà, 1989.

[4] Ï.À.Ì. Äèðàê. Ïðèíöèïû êâàíòîâîé ìåõàíèêè.Ì.: Íàóêà, 1979.