Реферат: Химические реакции

1. Химические реакции

Взаимодействие химических соединений записывается с помощью химических уравнений, отражающих материальный баланс всех реагирующих веществ. Это достигается с помощью стехиометрических коэффициентов перед формулами соединений:

где A, B, C, D Ц реагирующие вещества; a, b, c, d Ц стехиометрические коэффициенты. Можно выделить четыре основных типа химических реакций: Соединения:

Замещения:

Разложения:

Обмена:

Реакции, сопровождающиеся изменением степени окисления всех или некоторых реагирующих веществ, называются окислительно-восстановительными. Из написанных выше реакций к таковым относятся:

Способы получения солей

Рисунок 1.5.

Медный купорос, смешиваясь с водой, приобретает ярко-голубой оттенок.

1. Взаимодействие простых веществ

2. Взаимодействие оксидов

3. Взаимодействие кислот и оснований (нейтрализация)

4. Взаимодействие соли и кислоты

5. Взаимодействие соли и щелочи

6. Взаимодействие двух солей (обменная реакция)

7. Взаимодействие оксида с кислотой

8. Замещение водорода

9. Замещение металла

10. Термолиз кислых солей

11. Взаимодействие двух солей (присоединение)

12. Взаимодействие двух солей (комплексообразование)

Способы получения оксидов

Рисунок 1.6.

Лесные пожары Ц один из источников углекислоты.

1. Окисление простых и сложных веществ

S + O2 = SO2; 2Mg + O2 = 2MgO,

2.

2CuS +3O2 = 2CuO + 2SO2.

3. Разложение гидроксидов

4. Разложение карбонатов и других солей

5.

6.

7. Взаимодействие металла с другим оксидом

Способы получения кислот 1. Взаимодействие кислотного оксида с водой

2. Вытеснение летучих кислот

3. Взаимодействие соли и кислоты с образованием нерастворимой соли

4. Взаимодействие водорода с элементом с образованием бескислородной кислоты

5. Комплексные кислоты

6.

Способы получения оснований

Рисунок 1.7.

Несмотря на то, что натрий тяжелее воды, он лбегает по ее поверхности, подталкиваемый пузырьками водорода, образующимися в результате реакции. В результате образуется гидроокись натрия.

1. Взаимодействие металла с водой

2. Взаимодействие оксида с водой

3. Разложение соли водой (гидролиз)

4. Взаимодействие соли и щелочи

2. Скорость химических реакций.

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ: V =  ((С2 Ц С1) / (t2 - t1)) =  (DС / Dt) где С1 и С2 - молярные концентрации веществ в моменты времени t1 и t2 соответственно (знак (+) Ц если скорость определяется по продукту реакции, знак (Ц) Ц по исходному веществу). Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул. Факторы, влияющие на скорость химических реакций. 1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H2 и N2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H2O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно. Примеры Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании. Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует. 2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает. Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.) Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ. aA + bB + . . . о . . . V = k Х [A]a Х [B]b Х . . . Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов. Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ. Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит. 3. Температура. При повышении температуры на каждые 10C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t1 до t2 изменение скорости реакции можно рассчитать по формуле:

(t2 - t1) / 10

Vt2 / Vt1

= g
(где Vt2 и Vt1 - скорости реакции при температурах t2 и t1 соответственно; - температурный коэффициент данной реакции). Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса: k = A Х e ЦEa/RT где A - постоянная, зависящая от природы реагирующих веществ; R - универсальная газовая постоянная [8,314 Дж/(моль Х К) = 0,082 л Х атм/(моль Х К)]; Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению. Энергетическая диаграмма химической реакции.

Экзотермическая реакцияЭндотермическая реакция
А - реагенты, В - активированный комплекс (переходное состояние), С - продукты. Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры. 4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения. 5. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами . Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа"). 3. Обратимость химических реакций Обратимость Ч понятие, с которым связано решение многих вопросов химии и физики, первостепенной важности. В настоящей статье будут рассмотрены: 1) Возникновение учения об Обратимости. и его значение. 2) Точное значение термина Обратимости., ее обозначение, характеристика явлений. 3) Теории Обратимости. 4) Обратимость и законы химических превращений. 5) Метод исследования химических равновесий на основании условий Обратимости. 6) Теория гальванических элементов, как следствие учения об Обратимости. 1) Возникновение учения об Обратимости и его значение. Начало учению об Обратимости реакций положил Бертоллэ (см.) в конце прошлого столетия. Его идеи были развитием тех воззрений на причины физических явлений, которые введены в науку Ньютоном. Подобно Ньютону, Бертоллэ считал, что причину явлений химических следует искать в силах, подобных силе тяготения и действующих между малейшими частицами вещества. Возможность этим путем объяснять чисто физические явления была уже доказана изучением капиллярных явлений и формы, принимаемой жидкими телами при разных условиях. Бертоллэ, прежде всего, настаивает на отсутствии каких бы то ни было оснований различать силы, обуславливающие физические и химические явления, сцепление и сродство. Как явления химического соединения, так и явления сцепления должны быть отнесены к одной и той же причине, а законы, управляющие химическими явлениями, должны, в конце концов, принять форму законов механики. Необходимым следствием этих воззрений явилась идея химических равновесий, понятие о которых, как и самый термин, введены Бертоллэ. Акт химического действия находится в непрерывной зависимости от масс взаимодействующих тел и приводит всякий раз к определенному состоянию равновесия Ч таково основное положение Бертоллэ. Изменяя условия, нарушая равновесия, мы можем заставить реакцию идти в том или ином направлении. Все реакции, согласно Бертоллэ, должны быть обратимы, т. е. могут проникать в противоположных направлениях в зависимости от условий, подобно превращению жидкости в пар, или твердого тела в жидкость. Несмотря на многие важные следствия, выведенные из этих положений, идея об Обратимости реакций не нашла тотчас широкого применения, в основном по двум причинам. Стремясь обобщить явления, Бертоллэ впал в ошибку, настаивая на непрерывности действия масс, не только в акте химического превращения, но и в его результате, т. е. составе химического соединения, который также, согласно Бертоллэ, должен непрерывно меняться в зависимости от условий образования соединения. От этого положения пришлось отказаться после знаменитого спора Бертоллэ с Прутом. Вторым тормозом развития учения об Обратимости реакций была малочисленность известных случаев химических равновесий. Мало того, существовало убеждение, что обширный класс химических явлений, а именно химические превращения органических соединений вне организма, представляет явления абсолютно необратимые. Полагали, что эти сложные соединения могут быть только разлагаемы, что химику доступен только их анализ, обратная же реакция Ч синтез Ч осуществима только в условиях живого организма. Это положение было с очевидностью опровергнуто синтезом мочевины, выполненным Велером в 1828 г. Центр тяжести химических работ сосредоточился с тех пор на синтезе органических соединений и, если в отношении некоторых наиболее сложных соединений, каковы, например, белковые, цель еще не достигнута, то все же область синтеза включает уже огромное число сложных органических соединений и окончательное решение вопроса можно считать лишь вопросом времени. Вместе с тем, удается наблюдать все чаще и чаще не только обращаемость реакций, но и случаи настоящей Обратимости, т. е. химические равновесия в самых разнообразных видах химического превращения. Таким образом, подготовлена почва для возрождения идей Бертоллэ, и эти идеи в новой форме и на новых началах служат теперь основанием теории химического сродства на механических началах, основанием "химической механики". 2) Точное значение термина Обратимость реакций, ее обозначение, характеристика явлений. Обратимые реакции Ч частный случай "обратимого процесса". Под этим разумеют превращения, которые могут быть воспроизведены в обратном порядке при тожественных условиях, или, точнее, при условиях бесконечно мало отличных. Изменение объема газа под влиянием перемен внешнего давления Ч простейший случай обратимого процесса. Переход от объема V к объему V' может быть совершен и обратно здесь через непрерывный ряд состояний равновесия. Обратимый процесс Ч переход от одного состояния системы к другому через непрерывный ряд состояний равновесия. Но так как переход от одного состояния равновесия системы к другому требует нарушения равновесия, а при бесконечно малом нарушении равновесия переход должен совершаться бесконечно долго, то, следовательно, строго обратимый процесс неосуществим. Эта не реальная, а лишь мыслимая, идеальная форма явления, впервые указанная Сади Карно (см. Карно), служит одним из оснований термодинамики и является весьма важным орудием для отыскания зависимости между факторами, управляющими состоянием подвижного равновесия (параметрами). Всякий раз, когда между двумя состояниями системы имеет место непрерывный ряд состояний равновесия, переход от одного состояния к другому может быть рассматриваем, как обратимый процесс, и он может, быть выражен формулами термодинамики независимо от воззрений на природу сил или причин, превращение вызывающих. Перемена физического состояния тела, испарение и сжижение, плавление и замерзание Ч образчики превращений, могущих совершаться обратимым путем и приписываемых действию частичных сил. Вода, находясь при данной температуре в каком-либо сосуде, испаряется до тех пор, пока упругость пара не достигнет известной величины. Наступает равновесие, которое определяется величиной внешнего давления. Если стенки сосуда уступают давлению пара (как, например, если сосуд представляет цилиндр с подвижным поршнем), происходит испарение, Ч ежели давление стенки превышает давление пара, происходит сжижение, а при равенстве давлений, внешнего и давления пара, наступает всякий раз равновесие. Такой же характер представляют явления растворения или выделения тела из раствора. И здесь мы наблюдаем явления равновесия, которые выражаются в определенном "коэффициенте растворимости", непрерывно меняющемся при непрерывном изменении условий этого равновесия. В данном случае действующей причиной предполагаются также частичные силы, хотя часто растворение явно сопровождается актом химического соединения. С другой стороны и при сжижении появляется в некоторых случаях явная необходимость признать соединение частиц, как, например, для уксусной кислоты. Очевидное доказательство невозможности провести границу между так называемыми физическими превращениями и химическими, представил Сен-Клер Девилль, открыв случаи равновесий между явлениями несомненного химического соединения и разложения, названные им явлением диссоциации. Им же и его последователями установлена полная аналогия диссоциации с испарением. Случаи химических равновесий при двойных разложениях были предметом исследования еще Бертоллэ. Полную картину явлений равновесия для этого вида реакций дал Бертело исследованием образования сложных эфиров. Наконец, изучены равновесия и в случаях аллотропических и изомерных превращений, как, например превращение желтого фосфора в красный и обратно, превращение друг в друга двух кристаллических разностей серы, октаэдрической и призматической. Выяснение условий О. привело, наконец, и к превращению угля в алмаз, осуществленное недавно Муассаном, тогда как давно было известно лишь обратное превращение алмаза в уголь. Таким образом доказано, что все виды химического превращения: соединение, разложение, двойные разложения, аллотропические и изомерные превращения Ч могут вести к состояниям химического равновесия, могут удовлетворять требованиям Обратимости. Такие превращения могут совершаться при известных условиях в одном из двух противоположных направлениях и до конца, или же останавливаться на некотором пределе реакции, обозначающем ту часть массы данного вещества, которая подверглась превращению при данных условиях. Чтобы отличить такие состояния химических систем Вант Гофф предложил особый знак, как обозначение Обратимости реакции: ↔. Если при данных условиях тело или система тел, изменяясь, приходит к состоянию равновесия, то для обозначения его, оба противоположные состояния системы соединяются знаком Вант Гоффа, показывающим, что из какого конца ни исходить Ч в результате получится состояние равновесия при участии обеих противоположных состояний систем, в отличие от обычного знака равенства, которым обозначают полное превращение состояния системы, обозначенного по левую сторону знака равенства, в состояние, обозначенное по правую сторону знака. Так, мы имеем: С + S 2 ↔ CS2. Уголь и сера, нагретые до темно-красного каления, образуют сернистый углерод CS 2, который при той же температуре разлагается на уголь и серу, и потому из какого бы состояния системы мы ни исходили, мы приходим к одному и тому же состоянию равновесия, причем система будет заключать все три тела. Или: С 2H6 О (спирт) + С 2H4 О 3 (кислота) ↔ C 4H8O2 (эфир) + Н 2 О (вода). Случай равновесия, изученный Бертело. Здесь система в состоянии равновесия будет заключать четыре тела, будем ли мы исходить из смеси спирта и кислоты или эфира и воды. 3) Теории Обратимости. Две точки зрения служат основанием теории Обратимости. реакций, и сообразно этому две теории: теория термодинамическая и теория кинетическая. По термодинамической теории обратимые реакции рассматриваются как частные случаи обратимого процесса и трактуются на основании общих законов термодинамики. Этот прием привел к блестящим результатам. Получен ряд выводов общего характера, вполне согласных с действительностью и уясняющих некоторые, до того загадочные стороны химических явлений; сверх того для некоторых упрощенных условий реакции удается установить и численные соотношения между факторами, управляющими химическим равновесием. Применение формул термодинамики к решению различных задач О. реакций в значительной мере упрощено В. Гоффом введением особого приема "полупроницаемой стенки" (см. Осмос), дающего возможность изменять отношение действующих масс в растворах, путем, весьма близким к сжиманию или разрежению газа. Термодинамическая теория не рассматривает вопроса о первоначальных причинах (силах), обуславливающих факт О. Эта теория берет равновесие готовым и отыскивает общие законы, им управляющие, независимо от предполагаемых различий в природе явлений, или от качества тел, при одном лишь условии, чтобы процесс обладал свойством О. Кинетическая теория О. реакций основывает свои выводы на наблюдениях "скорости" химических реакций и на определенной гипотезе о причине, обуславливающей самый факт наступления химического равновесия. Скоростью реакции называют количество вещества, подвергшегося данному превращению в единицу времени. По кинетической теории Ч всякая реакция, приводящая к состоянию химического равновесия, совершается всегда так, что одновременно при одних и тех же условиях протекают обе противоположные реакции. В каждый данный момент наблюдаемая скорость реакции является разностью скоростей двух противоположных реакций. Например в системе CS 2, S и C при температуре темно-красного каления, одновременно происходит и разложение CS 2, и соединение C с S, и наблюдаемая скорость разложения с = а-b, где а действительная скорость разложения CS 2 при данных условиях, b -скорость соединения C с S; если, например, с > b, то наблюдается разложение, количество CS 2 в смеси уменьшается. Но так как по мере уменьшения количества CS 2 в смеси и скорость его разложения а неизбежно уменьшается, а скорость противоположной реакции b возрастает вследствие увеличения массы S и C, то необходимо должен наступить момент, когда наблюдаемая скорость разложения сделается равной нулю, т. е. c = aЧb = 0, и система будет находиться в состоянии химического равновесия, превращение достигает предела. По кинетической meopиu химические равновесия представляют образчики лишь кажущегося химического покоя, в действительности же наступающий в этих случаях предел реакции есть следствие равенства скоростей двух одновременно совершающихся противоположных превращений. Такой взгляд на причину О., высказанный впервые по отношению к испарению Клаузиусом, по отношению к химическим реакциям Ч Вильямсоном, получил широкое распространение. Необходимость его усматривалась также (Пфаундлер) в том положении кинетической теории газов, по которому в массе газа при данной температуре имеет место некоторая определенная средняя скорость движения частиц, причем постоянно являются уклонения от этой средней величины в обе стороны. Не все, следовательно, частицы находятся в одинаковых условиях движения и потому при одной и той же температуре одни частицы могут разлагаться, а другие Ч соединяться. Этим же путем объясняется и скорость химических реакций, т. е. тот факт, что и в однородной среде частицы вещества при данной температуре испытывают превращение последовательно, а не одновременно. Обе указанные теории О. реакций и поныне разрабатываются параллельно. Состязание между ними сводится к состязанию двух философских школ, различно трактующих физические явления Ч Ньютонианской и Картезианской. Должно признать, что кинетическая теория О. реакций в своих выводах значительно отстала от термодинамической. На ее стороне Ч наглядность и простота вывода изменяемости предела в зависимости от массы (закон химической массы) в однородной среде. Тот же закон выводится и на основании законов термодинамики. Но по отношению к равновесиям в неоднородной среде кинетическая теория находится в противоречии с действительностью. Кинетическая теория не указывает также связи между тепловым эффектом реакции и изменяемостью предела. Ее преимущество Ч непосредственная связь между скоростью реакции и пределом Ч лишь кажущееся: величины скоростей, находимые в двух противоположных реакциях отдельно, не имеют ничего общего с теми, которые надо было бы принять в условиях наступившего равновесия. Так, соединение дихлоруксусной кислоты и амилена ограничено пределом, при известных условиях близким к половине; на этом основании надо было бы ожидать, что скорость разложения дихлоруксусного амина в отдельности близка к скорости его образования, на самом же деле чистый дихлоруксусный амил не обнаруживает заметного разложения при тех условиях, при которых соединение совершается легко. 4) Обратимость и законы химических превращений.. Согласно предыдущему, лишь те превращения удовлетворяют условию Обратимости, которые могут быть вызваны в системах химического равновесия. Испарение воды в пустоте, замерзание переохлажденной жидкости, взрыв гремучего газа Ч явления, не удовлетворяющие условиям Обратимости. Возможность приложения формул термодинамики появляется в момент наступления равновесия. Учение об Обратимости реакций решает прежде всего вопросы касательно условий химического равновесия и его нарушения в зависимости от изменения условий. Но и в этом отношении получены весьма важные выводы общего характера, положено основание химической статики. Предсказание Бертоллэ оправдалось: действие химического сродства уже в значительной мере удалось подчинить законам, вполне сходным с законами механики. В механике равновесие системы определяется началом возможных перемещений (см. Лагранж), в химии началом возможных превращений. Явления перехода от данного состояния системы к состоянию равновесия еще не разработаны в столь общей форме. Весьма часто этот переход совершается чрезвычайно медленно, иногда и вовсе не совершается. В этих случаях огромное влияние оказывают контактные действия, класс явлений, хотя уже и весьма многочисленных, но все еще темных. Необходимо принять и в химических явлениях нечто, подобное трению или вязкости. Иногда задержка в наступлении равновесия, химическая вязкость, находится в прямом соотношении с физической вязкостью. Так, густые, вязкие жидкости весьма упорно сохраняют переохлажденное или пересыщенное состояние и даже от прикосновения готового кристалла медленно переходят к состоянию равновесия. В большинстве случаев контактный деятель не оказывает влияния на предел реакции и влияет лишь на время наступления равновесия, причем это влияние сказывается в обеих противоположных реакциях. Таковы влияния оболочки в превращениях газов. Здесь обнаруживается также некоторая связь между контактным действием и физическим свойством твердых тел: наиболее резко выражена способность вызывать химические превращения газов у благородных металлов большого удельного веса и особенно у платины. В некоторых случаях, однако, природа контактного деятеля влияет и на состояние равновесия, определяя его предел. Это имеет место, например, в случаях переохлажденных жидкостей и пересыщенных растворов. Здесь прикосновение готового кристалла не только неизбежно вызывает наступление равновесия, но и определяет его условия. В пересыщенном растворе глауберовой соли можно вызвать кристаллизацию или Na 2SO4, или Na 2SO4 + 7H2 O, или Na 2SO4 + 10H2 O, причем, после наступления равновесия раствор будет содержать при одной и той же температуре разные количества Na 2SO4 , смотря по тому, с которым из указанных твердых состояний этой соли он будет находиться в прикосновении. Расплавленная сера, будучи переохлаждена, может выделять или призматические, или октаэдрические кристаллы, смотря по тому, с которой из названных разностей она была приведена в прикосновение, причем устанавливается температура или 121