Читайте данную работу прямо на сайте или скачайте

Скачайте в формате документа WORD


История тригонометрии в формулах и аксиомах

Тригонометрия - слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, metrew- измеряю).

В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, глов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновениеа тригонометрии связано с землемерением, астрономией и строительным делом.

Впервые способы решения треугольников, основанные на изависимостях между сторонами и глами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н.э.) и Клавдием Птолемеем (2 в. н. э.). Пожднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ченые аль-Батани (850-929) и Абу-ль-Вефа Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 1Т с точностью до 1/604. Теорему синусов же знали индийский ченый Бхаскара (р. 4, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе Трактат о полном четырехстороннике изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Теорему тангенсов доказал Региомонтан (латинизированное имя немецкого астронома и математика Иоганна Мюллера (1436-1476)). Региомонтан составил также плдробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) - творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), также в работах математика Франсу Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Постепенно тригонометрия органически вошла в математический анализ, механику, физику и технические дисциплины.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались и приобрели важное значение для всей математики.

налитическая теория тригонометрических функций в основном была создана выдающимся математиком XV в. Леонардом Эйлером (1707-1783) членом Петербургской Академии наук.

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе - наука об измерении глов, от греч. gwnia - гол, metrew- измеряю). Термин гониометрия в последнее время практически не потребляется.

Изучение свойств тригонометрических функций и зависимостей между ними отнесено к школьному курсу алгебры, решение треугольников - к курсу геометрии.

Тригонометрические функции острого гла


В прямоугольном треугольнике, имеющем данный гол a, отношения сторон не зависят от размеров треугольника. Рассмотрим два прямоугольных треугольника АВС и А1В1С1 (рис.1), имеющих равные глы ÐА=ÐА1 =a. Из подобия этих треугольников имеем:


Если величину гла a измерить, то написанные равенства остаются справедливыми, измениться

и т.д. Поэтому отношения

В1

С


А1

Рис.1.

Синусом острого гла называется отношение противоположного этому глукатета к гипотенузе. Обозначают это так:


sina=

Значения тригонометрических функций (отношений отрезков) являются отвлеченными числами.

Приближенные значения тригонометрических функций острого угла можно найти непосредственно согласно их определениям. Построив прямоугольный треугольник с острым глом a и измерив его стороны, согласно определениям мы можемвычислить значение, например, sina.

Пользуясь тем, что значения тригонометрических функций не зависят от размеров треугольника, для вычисления значений sin глов a=30

Полученные результаты запишем в таблицу.

30

45

60

sina

С

1

1

45

2

С

1

30

Приближенные значения тригонометрических функций для глов от 0

90 N

B 52


0,79

а

b С 0,62 0

Радиусы АМ и АN разделим на 100 равных частей. Построим прямоугольный треугольник с вершиной в центре круга и катетом совпадающим с радиусом АМ и гипотенузой АВ=1. Если гол ВАС=a, то по определению тригонометрических функций мы имеем:

sina=а

Для гла 52

Построив прямоугольные треугольники для глов a=2

sin0

tga и ctga, то при aо0 отношение о0, т.е. , отношение при aо0 неограниченно возрастает. Этот результат записывают как о¥, где символ ¥ указывает, что величин неограниченно возрастает и не может быть выражена никаким числом, так как знак ¥ не является каким-либо числом. Таким образом, принимают, что tg0

Рассуждая аналогично при aо90

sin90

Приведем таблицу значений синусов для глов от 0

градусы

0

2

4

6

8

10

12

14

16

18

20

22

sin

0,00

0,03

0,07

0,10

0,14

0,17

0,21

0,24

0,28

0,31

0,34

0,37

градусы

24

26

28

30

32

34

36

38

40

42

44

46

sin

0,41

0,44

0,47

0,50

0,53

0,56

0,59

0,62

0,64

0,67

0,69

0,72

градусы

48

50

52

54

56

68

60

62

64

66

68

70

sin

0,74

0,77

0,79

0,81

0,83

0,93

0,87

0,88

0,90

0,91

0,93

0,94

градусы

72

74

76

78

80

82

84

86

88

90

sin

0,95

0,96

0,97

0,98

0,98

0,99

0,99

1,00

1,00

1,00

Пользуясь значениями тригонометрической функции y=sinx из таблицы, построим график.

y

y=sinx


1

0 30

Рис.4.

Основные соотношения между тригонометрическими функциями острого гла

Для прямоугольного треугольника в соответствии с теоремой Пифагора

a2+b2=c2


По определению тогда


(1)

Легко также найти следующие зависимости


(2)

(3)


(4)


(5)

(6)

(7)

(8)

Соотношения (1)-(8) связывают все тригонометрические
функции так, что по значению одной из них для данного острого гла можно найти значения всех остальных функций для этого же гла.

Тригонометрические функции произвольного гла


x0y задан радиус-вектор образующий с положительным направлением оси 0x угол a. Будем считать, что ось 0x - начальная сторона, вектора - конечная сторона гла a. Проекция вектор на координатные оси соответственно обозначим ax и ay.

агде - длина вектор, зависят только от

a и не зависят от длины вектор. Поэтому эти отношения можно рассматривать как функции произвольного гла a.

Синусом гла a,образованного осью 0x и произвольным радиусом-вектором, называется отношение проекции этого вектора на ось 0y к его длине:


y

A

ay


ax 0

аx

Рис. 6.

0x и конечной стороной соответствует бесчисленное множество глов, которые выражаются формулой

3607n+a, где n=0; 1; 2; 3; 4; Е

и sin(a+3607 n)=sina

Длина радиуса-вектора всегда число положительное. Проекция его на координатные оси величины алгебраические и в зависимости от координатных четвертей имеют следующие знаки:

I четверти ax>0; ay>0;

Во II четверти ax<0; ay>0;

В четверти ax<0; ay <0;

В IV четверти ax>0; ay<0/

График функции y=sinx

До сих пор аргументами тригонометрических функций рассматривались именованные величины - глы (дуги), измеренные в градусах или радианах. Значения тригонометрических функций, как отношения отрезков, являются абстрактными величинами (числами). При изучении свойств тригонометрических функций приходится сравнивать изменения функции в связи с изменениями аргумента, сравнивать можно только однородные или, что еще лучше, абстрактные величины.

Кроме того, введение тригонометрических функций от абстрактного аргумента дает возможность применять эти функции в различных вопросах математики, физики, техники и т.д.

x (радианов) будем рассматривать абстрактное число где r обозначает радианы, ии по определению принять что

sinx, где x Ц абстрактное число, равен sinx, где x измерен в радианах.

Тригонометрические функции являются периодическими, то есть существует число а, отличное от 0, такое, что при любом целом nтождественно выполняется равенство:

f(x+na)=f(x), n=0; 1; 2...

Число называется периодом функции. Период функции sinx равен 2p. Для нее имеет место формула:

sin(x+2pn)= sinx, где n=0; 1; 2...

График функции y=sinx называют синусоидой. Для построения графика можно взять значения аргумента x с определенным интервалом и составить таблицу значений y=sinx, соответствующих выбранным значениям x, затем по точкам, как это часто делается в алгебре, построить график.

x101y1 единичную окружность R=1 с центром 01 на оси абсцисс x1. Дугу этой окружности начиная от точки начиная от точки оси абсцисс x1 =+1, делим на n равных частей:

x0y, ось которой 0x совпадает с осью 01 x1 , но сначало координат 01(x1 =0) и 0(x=0) у етих систем различные. В новой системе координат отрезок оси абсцисс от x=0 до x=2p делим на n равных частей: Из точек деления окружности проводим прямые параллельные оси 0x, из точек деления отрезка [0, 2p] проводим прямые, перпендикулярные этой осм. Точки пересечения соответствующих прямых будут точками графика y=sinx, так как ординаты этихточек равны значениям синуса, соответствующим значениям аргумента в точках деления отрезка [0, 2p].

Рис.8.

Некоторые свойства функции y=sinx

1. Непрерывность.

Функция y=sinx существует при всех действительных значения x, причем, график ее является сплошной кривой линией (без разрывов), т.е. функция sinx непрерывна.

2. Четность, нечетность.

Функция y=sinx нечетная и ее график симметричный относительно начала координат.

3. Наибольшие и наименьшие значения.

Все возможные значения функции sinx ограничены неравенствами

-1£ sinx £+1,

причем sinx=+1, если


и sinx=-1, если

4.Нулевые значения (точки пересечения графика функции с осью абсцисс).

sinx=0, если x=pn (n=0; 1; 2;Е).

5. Интервалы возрастания и убывания.

Функция возрастает, т.е. большему значению аргумента соответствует большее значение функции на интервалах


(n=0; 1; 2;Е).

И бывает, т.е. большему значению аргумента соответствует меньшее значение функции на интервалах


(n=0; 1; 2;Е).