Читайте данную работу прямо на сайте или скачайте
Эконометрическое изучение и анализ посевных площадей, рожая и рожайности картофеля
Министерство сельского хозяйства РФ
Департамент научно – технологической политики и образования
Федеральное государственное образовательное чреждение высшего
профессионального образования
«Красноярский государственный аграрный ниверситет»
чинский филиал
Кафедра бухгалтерского чета и финансов
Курсовой проект
на тему: «Эконометрическое изучение и анализ посевных площадей, рожая и рожайности картофеля»
по дисциплине: «Эконометрика»
Выполнила студентка
4 курса 080801.65 Осинцева Ю. А.
Проверил Слепцов В. В.
чинск 2010 г.
Содержание
Введение 3
1 Теоретические аспекты эконометрического изучения и анализа себестоимости картофеля 6
2 Многофакторный корреляционно – регрессионный анализ 9
3 Вычисление параметров парной регрессии и корреляции 11
3.1 Выборочный коэффициент корреляции 12
3.2 Выборочный коэффициент детерминации 13
3.3 Средняя ошибка аппроксимации 14
4 Временные ряды в эконометрических исследованиях 15
4.1 Автокорреляция ровней временного ряда 17
4.2 Автокорреляция в остатках: расчет критерия Дарбина – Уотсона 29
Заключение 33
Библиографический список 35
Приложения 37
Введение
Картофель – важнейшая продовольственная, техническая и кормовая культура. По содержанию глеводов картофель находится в одном ряду с хлебом и крупами, его белки приближаются по составу к животным белкам. Картофель и продукты его переработки (мезга, барда) широко используются в качестве корма, особенно для свиней и птицы. Картофель служит сырьем для спиртовой, текстильной, химической, пищевой, обувной, полиграфической промышленности. Картофель издавна считался вторым хлебом в России. В рационе россиян он занимает весьма существенное место, и особенно его роль выросла в связи с заметным снижением прожиточного минимума.
В настоящее время картофель возделывается практически во всех странах мира. Значительные объемы его производства сосредоточены в Китае, странах Европейского Экономического Содружества, Польше, США. Необходимо отметить, что общемировое производство картофеля с 1970 года снижается больше, чем на 20%. Особенно большое снижение производства картофеля в последние 10 – 12 лет наблюдается в России.
В словиях произошедших рыночных реформ производством картофеля занимаются различные группы товаропроизводителей – коллективные сельскохозяйственные предприятия, личные подсобные хозяйства населения, крестьянские (фермерские) хозяйства.
Рассматривая картофель как важную продовольственную культуру, не следует забывать и его земледельческую функцию. Как пропашная культура, картофель при правильном возделывании способствует очищению полей от сорняков и является хорошим предшественником зерновых и других культур, в том числе и озимых. Картофель хорошо растет на бедных почвах и лучше многих культур переносит повторное возделывание на одном месте. Спрос на картофель постоянный. Зимой спрос на картофель растет, отсюда величивается потребление картофеля. Осенью, из – за массового сбора, цены на него снижаются.
Картофель – одна из самых прибыльных культур. Природно-климатические словия Иркутской области соответствуют биологическим особенностям развития картофелеводства.
Картофелеводство – неотъемлемая часть сельскохозяйственного производства. Для возрождения картофелеводства необходим ряд мероприятий. Все мероприятия можно представить двумя направлениями:
1. Организация эффективной внутрихозяйственной деятельности сельскохозяйственных предприятий. Она включает в себя:
- организацию внутрихозяйственных расчетных отношений;
- концентрацию оптимальных размеров посевов картофеля (100 – 300 га) в специализированных севооборотах, обеспечивающих наиболее благоприятные словия для возделывания этой культуры;
- изучение и применение современных экономических технологий производства и хранения картофеля.
2. Создание эффективного государственного механизма макроэкономического регулирования.
Оно непрерывно связано с системой восстановления всего сельского хозяйства страны. Должен быть предусмотрен комплекс мер, направленных на стимулирование рынка картофеля:
- создание системы поддержки государством отечественного сельскохозяйственного производителя;
- стратегия развития отечественного тракторного и сельскохозяйственного машиностроения;
- разработка интегрированных систем регионального агропромышленного комплекса, которые включали бы в себя финансы, производство, семеноводство, хранение и переработку картофеля. Каждая фирма специализируется на производстве определенного картофеля: семенного, кормового, продовольственного, для производства крахмала, чипсов и других продуктов переработки. Торговлю картофелем осуществляют кооперативы и сами фермеры через систему оптовых рынков и систему прямых поставок. Такая организация производства и сбыта позволяет снизить себестоимость продукции.
Целью написания курсового проекта является использование эконометрических методов при исследовании эффективности рожая картофеля.
Задачи курсового проекта: на основе корреляционно – регрессионного анализа провести исследование влияния факторов на валовой сбор картофеля сельскохозяйственных предприятий, выявить между ними факторную зависимость, также построить модель парной корреляции и проверить её на адекватность.
В качестве объекта исследования выступают 25 хозяйств аграрной сферы Красноярского края.
1 Теоретические аспекты эконометрического изучения и анализа себестоимости картофеля
Коренной поворот в сторону интенсификации требует качественной перестройки чета в целях активизации его роли в контроле за эффективностью использования материальных, трудовых и финансовых ресурсов. чет на нынешнем этапе призван не только фиксировать состояние дел, но и своевременно сигнализировать о возникновении непроизводительных затрат и потерь, давать объективные данные для оперативного экономического анализа и прогнозирования развития, служить задаче эффективного использования материальных, трудовых и финансовых ресурсов, предотвращения и недопущения потерь.
В этой связи возрастает роль себестоимости продукции, отражающей достигнутый ровень правления, организации производства, труда, его стимулирования. В снижении себестоимости продукции важным является организация эффективной системы чета и контроля затрат. Недостаточная аналитичность чета, его неоперативность и другие недостатки ослабляют контроль за организацией производства. Задача точного чета формирования издержек и контроля за снижением себестоимости и повышением эффективности производства продукции на всех его стадиях является актуальной. [2, с.34]
В современных словиях сложились производственные связи, оказывающие определенное влияние на формирование себестоимости конечного продукта, которые целесообразно принимать во внимание при организации чета производственных затрат. До настоящего времени недостаточно изучены вопросы классификации затрат по производству картофеля в сельском хозяйстве, чету его потерь при транспортировке и хранении. Необходимо системно изучать организацию чета производственных затрат по стадиям технологического цикла, так как значительные затраты общественного труда на производство картофеля требуют постоянного контроля за правильностью и целесообразностью их осуществления. Целесообразно изучение технологических особенностей производства для разработки методов организации чета за производством картофеля, обеспечивающих силение их контрольных функций с целью снижения себестоимости продукции.
Теория и практика чета, анализа и контроля хозяйственной деятельности, теоретические и методические основы организации производства и правления при переходе и развитии рыночных отношений, создании новых словий приватизации производства раскрыты недостаточно. Первичный чет в производстве, заготовке, хранении и реализации картофеля не обеспечивает надежный контроль за сохранностью продукции. В этой связи актуальны исследования по перестройке бухгалтерского чета и анализа при создании и функционировании коллективов, специализирующихся на производстве картофеля при современных словиях хозяйствования. [2, с.34]
В картофелеводстве объектом калькуляции является основная продукция – клубнеплоды, побочным – ботва, которая оценивается по нормативным затратам на ее борку.
Исчисление фактической себестоимости клубней картофеля производится следующим образом. Из общей суммы затрат на возделывание и борку рожая картофеля вычитают стоимость использованной в производстве ботвы. Себестоимость 1ц. картофеля определяется делением величины, полученной после вычитания, на массу клубней.
В специализированных картофелеводческих организациях себестоимость картофеля может быть рассчитана раздельно по ранним и поздним сортам. В таких случаях необходимо обеспечить также раздельный чет затрат по этим сортам.
Если в сельскохозяйственных организациях имеются картофелесортировальные пункты и весь выращенный рожай сортируется, то возникает необходимость в калькулировании себестоимости стандартного и нестандартного картофеля.
Следует отметить, что в результате сортировки кроме стандартного и нестандартного получают также мелкий и битый картофель, т.е. используемые отходы. Стоимость ботвы и стоимость мелкого и битого картофеля исключаются из общей суммы затрат по выращиванию картофеля. Оставшуюся после вычитания сумму распределяют между стандартным и нестандартным картофелем пропорционально его стоимости по ценам реализации. [5, с.62]
Так как картофель является одной из важнейших продовольственных культур, то значительная часть его подлежит реализации через торговую сеть и другим покупателям. Следует отметить, что Правительством РБ принимается ряд мер, направленных на лучшение продовольственной безопасности страны. Так, постановлением Совета Министров РБ от 01.07.2005 № 732 принято решение о создании стабилизационных фондов продовольственных товаров на межсезонный период 2005/2006 г. и формировании цен на продукцию растениеводства, которое обязывает облисполкомы и Мингорисполком создать соответствующие словия для хранения стабилизационных фондов. Кроме того, п. 4.2 данного постановления предусмотрено становить для юридических лиц и индивидуальных предпринимателей, осуществляющих производство продукции растениеводства, предельные закупочные цены на картофель и другую продукцию растениеводства с четом экономически обоснованных затрат на их производство и конъюнктуры рынка, также рекомендуемого Минсельхозпродом и Минэкономики минимального ровня закупочных цен на эти продукты. Названным постановлением также становлены предельные отпускные цены для организаций, осуществляющих заготовку картофеля, с ровнем рентабельности не более 20% от затрат и для организаций, занимающихся реализацией картофеля, – предельные розничные цены с четом торговой наценки не более 25%. [3, с.4]
2 Многофакторный корреляционно – регрессионный анализ
На основании вышеперечисленных показателей составить матрицу и по программе STRAZ решить задачу множественной корреляции.
По совокупности хозяйств построить корреляционное равнение связи рожайности картофеля с включением трех – четырех факторов.
анализ корреляционной модели начинается с определения тесноты связи, ее характеризует коэффициент корреляции (R). Он может изменяться от 0 до 1, что свидетельствует об отсутствии связи или о слабой, средней и тесной связи.
Квадрат коэффициента множественной корреляции называется коэффициентом множественной детерминации. Он характеризует величину вариации результативного признака, которая объединяется факторами, входящими в модель. В матрице этот коэффициент равен, например, 0,4321, для анализа необходимо перевести его в проценты, что составит 43%. Это значит, что 43% вариации результативного признака обусловлено влиянием факторов, включенных в модель, или на 43% выбранные факторы влияют на величину У (Урожайность).
Коэффициенты отдельного определения или частные коэффициенты детерминации отражают «чистый вклад» каждого фактора в воспроизведенную вариацию результативного признака. Наибольшую тесноту связи с результативным признаком имеет тот фактор, коэффициент при котором наибольший (например, если коэффициент при Х4 равен 0,5, это значит, что качество земли на 50% влияет на ровень рожайности). [8, с.109]
Коэффициенты чистой регрессии показывают, на сколько ц с 1 га величится рожайность при изменении фактора на 1 единицу измерения. Например, если коэффициент при Х3 равен 0,3, это значит, что при величении энергообеспеченности на 1 л.с., рожайность величится на 0,3 ц с 1 га.
Каждый из β – коэффициентов показывает, на сколько средних квадратических отклонений изменится в среднем рожайность, если соответствующий фактор изменится на одно среднее квадратическое отклонение. Сопоставляя β – коэффициенты между собой, можно определить, какой фактор оказывает наиболее сильное влияние на варьирование результативного признака.
Каждый из коэффициентов эластичности показывает, на сколько процентов в среднем изменится рожайность, если соответствующий фактор изменится на 1%.
Знак + или – говорит о прямой или обратной связи между рожайностью и фактором.
Построить равнение регрессии:
у = а0 + а1х1 + а2х2 + …+ аnxn, где:
0 – свободный член, экономического значения не имеет; (1)
1, а2, аn - коэффициенты чистой регрессии;
х1, х2, xn – значения соответствующих факторов.
у = (-3795,88)+(-5,57) * 57588+(-35,4) * 54668+92,7 * 50632+5,96 * 49703 + 41,9 * 46782+(-3,25) * 45627+(-0,03) * 44824+3,07 * 42313+5,35 * 40950
На основании полученного равнения регрессии рассчитать прогнозируемый ровень рожайности для хозяйств зоны. Для этого в равнение вместо Х подставить самые высокие их значения из матрицы и вместо – соответствующие значения коэффициентов.
Полученный результат означает, что в хозяйствах, где рожайность выше среднего ровня, в будущем возможно достичь прогнозируемого ровня рожайности и при словии достижения каждым хозяйством максимальных значений факторов (или минимальных, если коэффициент со знаком «минус»). [8, с.109]
Произведем расчет множественной регрессии в MS Excel. (Приложение 3)
3 Вычисление параметров парной регрессии и корреляции
Рассмотрим взаимосвязь между валовым сбором картофеля (Y) и всего посевной площадью (Х). Исходные данные (Приложение 1)
Все расчеты сведены в таблицу. (Приложение 2)
Рассмотрим простейшую модель парной регрессии – линейную регрессию. Линейная регрессия находит широкое применение в эконометрике ввиду четкой экономической интерпретации ее параметров.
Линейная регрессия сводится к нахождению равнения вида
yх = + b x или у = + b x + ε. (2)
Уравнение вида yх = + b x позволяет по заданным значениям фактора х находить теоретические значения результативного признака, подставляя в него фактические значения х.
Следующая система линейных равнений для оценки параметров и b:
n + b x = y; (3)
a x + b x2 = x y.
4455,02 * 25 + 4,79 * 136478 = 764922,22
4455,02 * 136478 + 4,79 * 931254868 = 5067475038,89
Решая систему равнений (3), найдем искомые оценки параметров и b.
= 4,79 (4)
30604,20 – 4,79 5459,12 = 4455,02
Получаем равнение парной регрессии у = 4455,02 + 4,79 х, подставляя в него фактическое значение х, определим теоретическое, т. е. расчетное значение . [11, с.87]
3.1 Выборочный коэффициент корреляции
Корреляция – статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.
Коэффициент корреляции или парный коэффициент корреляции в теории вероятностей и статистике – это показатель характера изменения двух случайных величин.
Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи – например, для независимых случайных величин).
Отрицательная корреляция – корреляция, при которой величение одной переменной связано с меньшением другой переменной, при этом коэффициент корреляции отрицателен.
Положительная корреляция – корреляция, при которой величение одной переменной связано с величением другой переменной, при этом коэффициент корреляции положителен.
втокорреляция – статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса – со сдвигом по времени. [1, с.209]
Рассчитаем линейный коэффициент парной корреляции:
(5)
3.2 Выборочный коэффициент детерминации
Коэффициент детерминации – это квадрат множественного коэффициента корреляции. Он показывает, какая доля дисперсии результативного признака объясняется влиянием независимых переменных.
Также это квадрат корреляции Пирсона между двумя переменными. Он выражает количество дисперсии, общей между двумя переменными.
Коэффициент принимает значения из интервала [0; 1]. Чем ближе значение к 1, тем в большей степени равнение регрессии пригодно для прогнозирования.
Функциональная связь возникает при значении равном 1, отсутствие связи – 0. При значениях показателей тесноты связи меньше 0,7 величина коэффициента детерминации всегда будет ниже 50%. Это означает, что на долю вариации факторных признаков приходится меньшая часть по сравнению с остальными неучтенными в модели факторами, влияющими на изменение результативного показателя. Построенные при таких словиях регрессионные модели имеют низкое практическое значение. [1, с.79]
Рассчитает коэффициент детерминации:
(6)
3.3 Средняя ошибка аппроксимации
Средняя ошибка аппроксимации – среднее отклонение расчетных значений от фактических, допустимы предел – не более 8 – 10%.
Фактические значения результативного признака отличаются от теоретических. Чем меньше это отличие, тем ближе теоретические значения подходят к эмпирическим данным и лучше качество модели. Величина отклонений фактических и расчетных значений результативного признака по каждому наблюдению представляет собой ошибку аппроксимации. Их число соответствует объему совокупности. В отдельных случаях ошибка аппроксимации может оказаться равной нулю. Для сравнения используются величины отклонений, выраженные в процентах к фактическим значениям.
Поскольку () может быть величиной как положительной, так и отрицательной, ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.
Отклонения () можно рассматривать как абсолютную ошибку аппроксимации, и как относительную ошибку аппроксимации. Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, определяют среднюю ошибку аппроксимации как среднюю арифметическую простую. [16, с.106]
Среднюю ошибку аппроксимации рассчитаем по формуле:
4,2% (7)
4 Временные ряды в эконометрических исследованиях
Эконометрическую модель можно представить с помощью двух типов исходных данных:
· данные, характеризующие совокупность различных объектов в определенный момент или период времени;
· данные, характеризующие один объект, построенные за ряд последовательных моментов или периодов времени.
Модели, построенные по данным первого типа, называются пространственными моделями, модели, построенные по данным второго типа, называются моделями временных рядов.
Временной ряд – совокупность значений какого – либо показателя за несколько последовательных моментов времени.
Каждый ровень временного ряда формируется под воздействием большого числа факторов, которые можно словно разделить на три группы или компоненты:
1) факторы, характеризующие тенденцию ряда (Т), т. е. характеризуют совокупное долговременное воздействие множества фактора на динамику изучаемого показателя. В результате они формируют его возрастающую или бывающую тенденцию;
2) факторы, формирующие циклические колебания ряда (S), т. е. эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отдельных показателей зависит от времени года (например, ровень безработицы в курортных городах в зимний период выше, чем в летний);
3) случайные факторы (Е). [10, с.296]
Основная задача эконометрического исследования отдельного временного ряда – выявление и придание количественного выражения каждой из перечисленных выше компонент, с тем чтобы использовать полученную информацию для прогнозирования будущих значений ряда или при построении моделей взаимосвязи двух или более временных рядов. [10, с.296]
Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью временного ряда и имеет следующий вид:
Y = T + S + E (8)
Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью временного ряда и имеет вид:
Y = T S E (9)
4.1 Автокорреляция ровней временного ряда
втокорреляцией называется корреляция ровней временного ряда друг с другом, со сдвигом во времени (лагом). Обычно изучение автокорреляции начинается со сдвига на одну единицу времени, принятую в изучаемом ряду, затем со сдвигом на две единицы и т. д.
При наличии тенденций или циклических колебаний значения каждого последующего ровня ряда зависят от предыдущих значений, т. е. такая зависимость называется корреляционной зависимостью и наряду с этим рассчитывается автокорреляция ровней ряда.
втокорреляция ровней ряда рассчитывается в зависимости от заданных параметров:
1) коэффициент автокорреляции ровня ряда 1 порядка:
, где (10)
;
.
2) коэффициент автокорреляции ровня ряда 2 порядка:
, где (11)
;
.
Свойства коэффициента автокорреляции:
§ он строится по аналогии с линейным коэффициентом корреляции и характеризует тесноту связи как текущего, так и последующего ровня ряда;
§ по знаку коэффициента автокорреляции нельзя делать выводы о возрастающей или бывающей тенденции его изменения. [8, с.113]
Последовательность коэффициента автокорреляции первого, второго и т. д. порядков называется автокорреляционной функцией временного ряда, график зависимости его значений от величины лага называется коррелограммой.
анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором связь между текущим и предыдущим ровнями ряда наиболее тесная, т. е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.
Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка τ, ряд содержит циклические колебания с периодичностью в τ момент времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать предположение относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний и имеет структуру, сходную со структурой ряда, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции ровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты Т и циклической (сезонной) компоненты S. [14, с.187]
Произведем расчет коэффициентов автокорреляции ровней ряда для наших данных.
Таблица 1 – Расчет коэффициента автокорреляции первого порядка временного ряда
t |
|
|
|
- |
|
|
|
1 |
4752 |
- |
- |
- |
- |
- |
- |
2 |
30950 |
4752 |
-929,38 |
-25226,25 |
23646,09 |
863737,89 |
636363689,06 |
3 |
6 |
30950 |
-25324,38 |
971,75 |
-24608961,41 |
641323969,14 |
944298,06 |
4 |
4100 |
6 |
-29,38 |
-23423,25 |
650683245,47 |
771693675,39 |
548648640,56 |
5 |
10412 |
4100 |
-21467,38 |
-25878,25 |
38097,09 |
460848189,39 |
669683823,06 |
6 |
22167 |
10412 |
-9712,38 |
-19566,25 |
190034757,34 |
94330228,14 |
382838139,06 |
7 |
15271 |
22167 |
-16608,38 |
-7811,25 |
129732169,22 |
275838120,14 |
61015626,56 |
8 |
39011 |
15271 |
7131,63 |
-14707,25 |
-104886591,78 |
50860075,14 |
216303202,56 |
9 |
7498 |
39011 |
-24381,38 |
9032,75 |
-220230865,03 |
594451446,89 |
81590572,56 |
10 |
26499 |
7498 |
-5380,38 |
-22480,25 |
120952175,09 |
28948435,14 |
505361640,06 |
11 |
40950 |
26499 |
9070,63 |
-3479,25 |
-31558972,03 |
82276237,89 |
12105180,56 |
12 |
46782 |
40950 |
14902,63 |
10971,75 |
163507875,84 |
088231,89 |
120379298,06 |
13 |
39356 |
46782 |
7476,63 |
16803,75 |
125635337,34 |
55821,39 |
282366014,06 |
14 |
6259 |
39356 |
-25620,38 |
9377,75 |
-240261471,66 |
656403615,14 |
87942195,06 |
15 |
50632 |
6259 |
18752,63 |
-23719,25 |
-798200,53 |
351660944,39 |
562602820,56 |
16 |
49703 |
50632 |
17823,63 |
20653,75 |
368124694,84 |
317681608,14 |
426577389,06 |
17 |
16256 |
49703 |
-15623,38 |
19724,75 |
-308167166,03 |
244089846,39 |
389065762,56 |
18 |
40368 |
16256 |
8488,63 |
-13722,25 |
-116483034,41 |
72056754,39 |
188300145,06 |
19 |
42313 |
40368 |
10433,63 |
10389,75 |
108402755,34 |
108860530,64 |
107946905,06 |
20 |
24234 |
42313 |
-7645,38 |
12334,75 |
-94303789,28 |
58451758,89 |
152146057,56 |
21 |
38330 |
24234 |
6450,63 |
-5744,25 |
-37054002,66 |
41610562,89 |
32996408,06 |
22 |
57588 |
38330 |
25708,63 |
8351,75 |
214712008,84 |
660999,39 |
69751728,06 |
23 |
54668 |
57588 |
22788,63 |
57588,00 |
1312351336,50 |
519321429,39 |
3316344,00 |
24 |
44824 |
54668 |
12944,63 |
24689,75 |
319599,09 |
167563316,39 |
609583755,06 |
25 |
45627 |
44824 |
13747,63 |
14845,75 |
204093803,84 |
188997193,14 |
220396293,06 |
итого |
765105 |
719478 |
-4752 |
29978,25 |
2864459403,16 |
7053227,63 |
9681287327,44 |
31879,38 (12)
29978,25 (13)
0,356 (14)
Таблица 2 – Расчет коэффициента автокорреляции второго порядка временного ряда
t |
|
|
|
- |
|
|
|
1 |
4752 |
- |
- |
- |
- |
- |
- |
2 |
30950 |
- |
- |
- |
- |
- |
- |
3 |
6 |
30950 |
-26710,43 |
-125,04 |
9965,67 |
713447326,28 |
15635,87 |
4 |
4100 |
6 |
-29165,43 |
-24520,04 |
715137728,93 |
850622586,06 |
601232532,18 |
5 |
10412 |
4100 |
-22853,43 |
-26975,04 |
616472396,89 |
579481,36 |
727652970,65 |
6 |
22167 |
10412 |
-11098,43 |
-20663,04 |
229327440,45 |
123175254,62 |
426961365,78 |
7 |
15271 |
22167 |
-17994,43 |
-8908,04 |
160295207,41 |
323799683,15 |
79353238,61 |
8 |
39011 |
15271 |
5745,57 |
-15804,04 |
-90803162,50 |
33011519,67 |
249767790,26 |
9 |
7498 |
39011 |
-25767,43 |
7935,96 |
-204489242,11 |
663960695,28 |
62979405,91 |
10 |
26499 |
7498 |
-6766,43 |
-23577,04 |
159532527,06 |
45784639,67 |
876979,18 |
11 |
40950 |
26499 |
7684,57 |
-4576,04 |
-35164904,55 |
59052542,58 |
20940173,91 |
12 |
46782 |
40950 |
13516,57 |
9874,96 |
133475493,84 |
182697535,28 |
97514766,31 |
13 |
39356 |
46782 |
6090,57 |
15706,96 |
95664243,06 |
37094984,67 |
246708483,18 |
14 |
6259 |
39356 |
-27006,43 |
8280,96 |
-223639112,24 |
729347519,67 |
68574240,91 |
15 |
50632 |
6259 |
17366,57 |
-24816,04 |
-430969437,50 |
301597587,45 |
615836013,91 |
16 |
49703 |
50632 |
16437,57 |
19556,96 |
321468748,28 |
270193550,28 |
382474548,39 |
17 |
16256 |
49703 |
-17009,43 |
18627,96 |
-316851011,59 |
289320871,62 |
347764,18 |
18 |
40368 |
16256 |
7102,57 |
-14819,04 |
-105253,76 |
50446432,67 |
219604049,61 |
19 |
42313 |
40368 |
9047,57 |
9292,96 |
84078630,19 |
81858436,36 |
86359040,91 |
20 |
24234 |
42313 |
-9031,43 |
11237,96 |
-101494871,42 |
81566814,23 |
126291,78 |
21 |
38330 |
24234 |
5064,57 |
-6841,04 |
-34646910,85 |
25649820,84 |
46799875,87 |
22 |
57588 |
38330 |
24322,57 |
7254,96 |
176459153,15 |
591587178,75 |
52634394,13 |
23 |
54668 |
57588 |
21402,57 |
57588,00 |
1232530925,74 |
458069797,88 |
3316344,00 |
24 |
44824 |
54668 |
11558,57 |
23592,96 |
272700726,63 |
133600429,88 |
556627597,44 |
25 |
45627 |
44824 |
12361,57 |
13748,96 |
169958622,71 |
152808294,62 |
189033805,44 |
итого |
765105 |
714726 |
-35702 |
31075,04 |
2827129934,50 |
6720972982,87 |
9076617083,43 |
33265,43 (15)
31075,04 (16)
0,362 (17)
Таблица 3 – Расчет коэффициента автокорреляции третьего порядка временного ряда
t |
|
|
|
- |
|
|
|
1 |
4752 |
- |
- |
- |
- |
- |
- |
2 |
30950 |
- |
- |
- |
- |
- |
- |
3 |
6 |
- |
- |
- |
- |
- |
- |
4 |
4100 |
6 |
-30677,50 |
-24525,73 |
752387998,41 |
941109006,25 |
601511298,26 |
5 |
10412 |
4100 |
-24365,50 |
-26980,73 |
657398910,36 |
593677590,25 |
727959644,17 |
6 |
22167 |
10412 |
-12610,50 |
-20668,73 |
260642985,27 |
159024710,25 |
427196287,07 |
7 |
15271 |
22167 |
-19506,50 |
-8913,73 |
173875621,05 |
380503542,25 |
79454533,89 |
8 |
39011 |
15271 |
4233,50 |
-15809,73 |
-66930480,41 |
17922522,25 |
249947476,44 |
9 |
7498 |
39011 |
-27279,50 |
7930,27 |
-216874,86 |
744171120,25 |
62889225,53 |
10 |
26499 |
7498 |
-8278,50 |
-23582,73 |
195229607,73 |
68533562,25 |
556145025,62 |
11 |
40950 |
26499 |
6172,50 |
-4581,73 |
-28280711,59 |
38099756,25 |
20994,80 |
12 |
46782 |
40950 |
12004,50 |
9869,27 |
118475684,45 |
144108020,25 |
97402544,17 |
13 |
39356 |
46782 |
4578,50 |
15701,27 |
71277,18 |
20962662,25 |
246529965,26 |
14 |
6259 |
39356 |
-28518,50 |
8275,27 |
-235998365,27 |
813304842,25 |
68480138,71 |
15 |
50632 |
6259 |
15854,50 |
-24821,73 |
-393536075,05 |
251365170,25 |
616118144,80 |
16 |
49703 |
50632 |
14925,50 |
19551,27 |
291812521,09 |
770550,25 |
382252265,26 |
17 |
16256 |
49703 |
-18521,50 |
18622,27 |
-344912424,32 |
343045962,25 |
346789041,53 |
18 |
40368 |
16256 |
5590,50 |
-14824,73 |
-82877637,82 |
31253690,25 |
219772538,71 |
19 |
42313 |
40368 |
7535,50 |
9287,27 |
69984243,64 |
56783760,25 |
86253434,71 |
20 |
24234 |
42313 |
-10543,50 |
11232,27 |
-118427467,50 |
65392,25 |
126163950,62 |
21 |
38330 |
24234 |
3552,50 |
-6846,73 |
-24322998,64 |
12620256,25 |
46877674,35 |
22 |
57588 |
38330 |
22810,50 |
7249,27 |
165359535,55 |
520318910,25 |
52551955,07 |
23 |
54668 |
57588 |
19890,50 |
57588,00 |
1145454114,00 |
395631990,25 |
3316344,00 |
24 |
44824 |
54668 |
10046,50 |
23587,27 |
236969535,45 |
100932162,25 |
556359434,71 |
25 |
45627 |
44824 |
10849,50 |
13743,27 |
149107637,45 |
117711650,25 |
177545,26 |
итого |
765105 |
683776 |
-42257 |
31080,73 |
2776936,18 |
6085016829,50 |
9076902092,93 |
34,50 (18)
31080,73 (19)
0,374 (20)
Таблица 4 – Расчет коэффициента автокорреляции четвертого порядка временного ряда
t |
|
|
|
- |
|
|
|
1 |
4752 |
- |
- |
- |
- |
- |
- |
2 |
30950 |
- |
- |
- |
- |
- |
- |
3 |
6 |
- |
- |
- |
- |
- |
- |
4 |
4100 |
- |
- |
- |
- |
- |
- |
5 |
10412 |
4100 |
-26021,57 |
-28148,62 |
732471301,16 |
677122179,61 |
792344754,29 |
6 |
22167 |
10412 |
-14266,57 |
-21836,62 |
311533685,40 |
203535060,33 |
476837931,43 |
7 |
15271 |
22167 |
-21162,57 |
-10081,62 |
213352983,21 |
447854429,47 |
101639042,62 |
8 |
39011 |
15271 |
2577,43 |
-16977,62 |
-43758600,41 |
6643138,04 |
288239548,53 |
9 |
7498 |
39011 |
-28935,57 |
6762,38 |
-195673357,07 |
837267293,90 |
45729796,15 |
10 |
26499 |
7498 |
-9934,57 |
-24750,62 |
245886792,83 |
98695709,47 |
612593143,24 |
11 |
40950 |
26499 |
4516,43 |
-5749,62 |
-25967743,74 |
20398127,04 |
33058119,19 |
12 |
46782 |
40950 |
10348,43 |
8701,38 |
90045619,26 |
107089973,90 |
75714030,48 |
13 |
39356 |
46782 |
2922,43 |
14533,38 |
42472767,73 |
8540588,76 |
211219161,91 |
14 |
6259 |
39356 |
-30174,57 |
7107,38 |
-214462174,22 |
910504760,90 |
50514864,00 |
15 |
50632 |
6259 |
14198,43 |
-25989,62 |
-369011749,65 |
201595373,90 |
675460298,24 |
16 |
49703 |
50632 |
13269,43 |
18383,38 |
243936960,45 |
176034,61 |
337948695,24 |
17 |
16256 |
49703 |
-20177,57 |
17454,38 |
-352187018,41 |
407134388,76 |
304655414,43 |
18 |
40368 |
16256 |
3934,43 |
-15992,62 |
-62921817,31 |
15479728,18 |
255763864,00 |
19 |
42313 |
40368 |
5879,43 |
8119,38 |
47737320,35 |
34567680,33 |
65924347,05 |
20 |
24234 |
42313 |
-12199,57 |
10064,38 |
-122781134,31 |
148829543,04 |
101291763,95 |
21 |
38330 |
24234 |
1896,43 |
-8014,62 |
-15199152,55 |
3596441,33 |
64234118,48 |
22 |
57588 |
38330 |
21154,43 |
6081,38 |
128648138,97 |
447509848,18 |
36983194,29 |
23 |
54668 |
57588 |
18234,43 |
57588,00 |
1050084272,57 |
332494385,33 |
3316344,00 |
24 |
44824 |
54668 |
8390,43 |
22419,38 |
188108214,50 |
70399291,61 |
502628642,29 |
25 |
45627 |
44824 |
9193,43 |
12575,38 |
115610866,54 |
84519128,90 |
158140206,10 |
итого |
765105 |
677221 |
-46357 |
32248,62 |
2007926175,31 |
5239854805,57 |
8507298679,90 |
36433,57 (20)
32248,62 (21)
0,301 (22)
Таблица 5 – Расчет коэффициента автокорреляции пятого порядка временного ряда
t |
|
|
|
- |
|
|
|
1 |
4752 |
- |
- |
- |
- |
- |
- |
2 |
30950 |
- |
- |
- |
- |
- |
- |
3 |
6 |
- |
- |
- |
- |
- |
- |
4 |
4100 |
- |
- |
- |
- |
- |
- |
5 |
10412 |
- |
- |
- |
- |
- |
- |
6 |
22167 |
10412 |
-16088,25 |
-23244,05 |
373956087,41 |
258831788,06 |
540285860,40 |
7 |
15271 |
22167 |
-22984,25 |
-11489,05 |
264067197,46 |
528275748,06 |
131998269,90 |
8 |
39011 |
15271 |
755,75 |
-18385,05 |
-13894501,54 |
571158,06 |
338010063,50 |
9 |
7498 |
39011 |
-30757,25 |
5354,95 |
-164703535,89 |
946008427,56 |
28675489,50 |
10 |
26499 |
7498 |
-11756,25 |
-26158,05 |
307520575,31 |
138209414,06 |
684243579,80 |
11 |
40950 |
26499 |
2694,75 |
-7157,05 |
-19286460,49 |
7261677,56 |
51223364,70 |
12 |
46782 |
40950 |
8526,75 |
7293,95 |
62193688,16 |
72705465,56 |
53201706,60 |
13 |
39356 |
46782 |
1100,75 |
13125,95 |
18389,46 |
1211650,56 |
172290563,40 |
14 |
6259 |
39356 |
-31996,25 |
5699,95 |
-182377025,19 |
1023760014,06 |
32489430,00 |
15 |
50632 |
6259 |
12376,75 |
-27397,05 |
-339086438,59 |
153183940,56 |
750598348,70 |
16 |
49703 |
50632 |
11447,75 |
16975,95 |
194336431,61 |
131050980,06 |
288182878,40 |
17 |
16256 |
49703 |
-21,25 |
16046,95 |
-353020864,79 |
483967,56 |
257504604,30 |
18 |
40368 |
16256 |
2112,75 |
-17400,05 |
-36761955,64 |
4463712,56 |
302761740,00 |
19 |
42313 |
40368 |
4057,75 |
6711,95 |
27235415,11 |
16465335,06 |
45050272,80 |
20 |
24234 |
42313 |
-14021,25 |
8656,95 |
-121381260,19 |
196595451,56 |
74942783,30 |
21 |
38330 |
24234 |
74,75 |
-9422,05 |
-704298,24 |
5587,56 |
88775026,20 |
22 |
57588 |
38330 |
19332,75 |
4673,95 |
90360306,86 |
373755,56 |
21845808,60 |
23 |
54668 |
57588 |
16412,75 |
57588,00 |
945177447,00 |
269378362,56 |
3316344,00 |
24 |
44824 |
54668 |
6568,75 |
21011,95 |
138046,56 |
43148476,56 |
441502042,80 |
25 |
45627 |
44824 |
7371,75 |
67,95 |
82327335,41 |
54342698,06 |
124723107,20 |
итого |
765105 |
673121 |
-56769 |
33656,05 |
1268428779,84 |
4703192,25 |
7744682684,15 |
38255,25 (20)
33656,05 (21)
0,21 (22)
Таблица 6 – Расчет коэффициента автокорреляции шестого порядка временного ряда
t |
|
- |
|
|
|
|||
1 |
4752 |
- |
- |
- |
- |
- |
- |
|
2 |
30950 |
- |
- |
- |
- |
- |
- |
|
3 |
6 |
- |
- |
- |
- |
- |
- |
|
4 |
4100 |
- |
- |
- |
- |
- |
- |
|
5 |
10412 |
- |
- |
- |
- |
- |
- |
|
6 |
22167 |
- |
- |
- |
- |
- |
- |
|
7 |
15271 |
22167 |
-22984,3 |
-11489,05 |
264067197,5 |
528275748,1 |
131998269,9 |
|
8 |
39011 |
15271 |
755,75 |
-18385,05 |
-13894501,54 |
571158,06 |
338010063,5 |
|
9 |
7498 |
39011 |
-30757,3 |
5354,95 |
-164703535,9 |
946008427,6 |
28675489,5 |
|
10 |
26499 |
7498 |
-11756,3 |
-26158,05 |
307520575,3 |
138209414,1 |
684243579,8 |
|
11 |
40950 |
26499 |
2694,75 |
-7157,05 |
-19286460,49 |
7261677,56 |
51223364,7 |
|
12 |
46782 |
40950 |
8526,75 |
7293,95 |
62193688,16 |
72705465,56 |
53201706,6 |
|
13 |
39356 |
46782 |
1100,75 |
13125,95 |
18389,46 |
1211650,56 |
172290563,4 |
|
14 |
6259 |
39356 |
-31996,3 |
5699,95 |
-182377025,2 |
1023760014 |
32489430 |
|
15 |
50632 |
6259 |
12376,75 |
-27397,05 |
-339086438,6 |
153183940,6 |
750598348,7 |
|
16 |
49703 |
50632 |
11447,75 |
16975,95 |
194336431,6 |
131050980,1 |
288182878,4 |
|
17 |
16256 |
49703 |
-21,3 |
16046,95 |
-353020864,8 |
483967,6 |
257504604,3 |
|
18 |
40368 |
16256 |
2112,75 |
-17400,05 |
-36761955,64 |
4463712,56 |
302761740 |
|
19 |
42313 |
40368 |
4057,75 |
6711,95 |
27235415,11 |
16465335,06 |
45050272,8 |
|
20 |
24234 |
42313 |
-14021,3 |
8656,95 |
-121381260,2 |
196595451,6 |
74942783,3 |
|
21 |
38330 |
24234 |
74,75 |
-9422,05 |
-704298,24 |
5587,56 |
88775026,2 |
|
22 |
57588 |
38330 |
19332,75 |
4673,95 |
90360306,86 |
373755,6 |
21845808,6 |
|
23 |
54668 |
57588 |
16412,75 |
57588 |
945177447 |
269378362,6 |
3316344 |
|
24 |
44824 |
54668 |
6568,75 |
21011,95 |
138046,6 |
43148476,56 |
441502042,8 |
|
25 |
45627 |
44824 |
7371,75 |
67,95 |
82327335,41 |
54342698,06 |
124723107,2 |
|
итого |
765105 |
673121 |
-56769 |
33656,05 |
1268428780 |
4703192 |
7744682684 |
40268,68 (23)
34879,42 (24)
0,154 (25)
Таблица 7 – Расчет коэффициента автокорреляции седьмого порядка временного ряда
t |
|
- |
|
|
|
||
1 |
4752 |
- |
- |
- |
- |
- |
- |
2 |
30950 |
- |
- |
- |
- |
- |
- |
3 |
6 |
- |
- |
- |
- |
- |
- |
4 |
4100 |
- |
- |
- |
- |
- |
- |
5 |
10412 |
- |
- |
- |
- |
- |
- |
6 |
22167 |
- |
- |
- |
- |
- |
- |
7 |
15271 |
- |
- |
- |
- |
- |
- |
8 |
39011 |
15271 |
-3494,83 |
-20314,67 |
70996374,22 |
12213860,03 |
412685681,78 |
9 |
7498 |
39011 |
-35007,83 |
3425,33 |
-119913498,44 |
1225548394,69 |
11732908,44 |
10 |
26499 |
7498 |
-16006,83 |
-28087,67 |
449594599,06 |
256218713,36 |
788917018,78 |
11 |
40950 |
26499 |
-1,83 |
-9086,67 |
14137338,89 |
2420617,36 |
82567511,11 |
12 |
46782 |
40950 |
4276,17 |
5364,33 |
22938783,39 |
18285601,36 |
28776072,11 |
13 |
39356 |
46782 |
-3149,83 |
96,33 |
-35266583,94 |
9921450,03 |
125357880,11 |
14 |
6259 |
39356 |
-36246,83 |
3770,33 |
-132643,94 |
1313832926,69 |
14215413,44 |
15 |
50632 |
6259 |
8126,17 |
-29326,67 |
-238313381,11 |
66034584,69 |
860053377,78 |
16 |
49703 |
50632 |
7197,17 |
15046,33 |
108290968,72 |
51799208,03 |
226392146,78 |
17 |
16256 |
49703 |
-26249,83 |
14117,33 |
-370577647,11 |
689053750,03 |
199299100,44 |
18 |
40368 |
16256 |
-2137,83 |
-19329,67 |
41323605,72 |
4570331,36 |
373636013,44 |
19 |
42313 |
40368 |
-192,83 |
4782,33 |
-922193,28 |
37184,69 |
22870712,11 |
20 |
24234 |
42313 |
-18271,83 |
6727,33 |
-122920713,44 |
859893,36 |
45257013,78 |
21 |
38330 |
24234 |
-4175,83 |
-11351,67 |
47402668,06 |
17437584,03 |
128860336,11 |
22 |
57588 |
38330 |
15082,17 |
2744,33 |
41390492,72 |
227471751,36 |
7531365,44 |
23 |
54668 |
57588 |
12162,17 |
57588,00 |
700394854,00 |
147918298,03 |
3316344,00 |
24 |
44824 |
54668 |
2318,17 |
19082,33 |
44236029,06 |
5373896,69 |
364135445,44 |
25 |
45627 |
44824 |
3121,17 |
9238,33 |
28834378,06 |
9741681,36 |
85346802,78 |
итого |
765105 |
640542 |
-94207 |
35585,67 |
544963430,61 |
4391739727,17 |
7094012543,89 |
42505,83 (26)
35585,67 (27)
0,098 (28)
Таблица 8 – Расчет коэффициента автокорреляции восьмого порядка временного ряда
t |
|
- |
|
|
|
||
1 |
4752 |
- |
- |
- |
- |
- |
- |
2 |
30950 |
- |
- |
- |
- |
- |
- |
3 |
6 |
- |
- |
- |
- |
- |
- |
4 |
4100 |
- |
- |
- |
- |
- |
- |
5 |
10412 |
- |
- |
- |
- |
- |
- |
6 |
22167 |
- |
- |
- |
- |
- |
- |
7 |
15271 |
- |
- |
- |
- |
- |
- |
8 |
39011 |
- |
- |
- |
- |
- |
- |
9 |
7498 |
39011 |
-37508,18 |
2230,35 |
-83656471,71 |
1406863302,15 |
4974474,24 |
10 |
26499 |
7498 |
-18507,18 |
-29282,65 |
541939116,64 |
342515580,91 |
857473418,77 |
11 |
40950 |
26499 |
-4056,18 |
-10281,65 |
41704174,88 |
16452567,56 |
105712266,24 |
12 |
46782 |
40950 |
1775,82 |
4169,35 |
7404035,06 |
3153549,21 |
17383503,95 |
13 |
39356 |
46782 |
-5650,18 |
11,35 |
-56509409,06 |
31924494,15 |
127060,65 |
14 |
6259 |
39356 |
-38747,18 |
2575,35 |
-99787654,89 |
1501343684,44 |
6632442,77 |
15 |
50632 |
6259 |
5625,82 |
-30521,65 |
-171709400,18 |
31649890,38 |
931570939,18 |
16 |
49703 |
50632 |
4696,82 |
13851,35 |
65057360,41 |
22060151,27 |
191859978,30 |
17 |
16256 |
49703 |
-28750,18 |
12922,35 |
-371519927,47 |
826572647,09 |
166987205,54 |
18 |
40368 |
16256 |
-4638,18 |
-20524,65 |
95196935,06 |
21512680,97 |
421261136,89 |
19 |
42313 |
40368 |
-2693,18 |
3587,35 |
-9661374,53 |
7253199,50 |
12869101,12 |
20 |
24234 |
42313 |
-20772,18 |
5532,35 |
-114919011,59 |
431483315,33 |
30606929,07 |
21 |
38330 |
24234 |
-6676,18 |
-12546,65 |
83763629,88 |
44571332,27 |
157418352,42 |
22 |
57588 |
38330 |
12581,82 |
1549,35 |
19493685,29 |
158302283,33 |
2400494,54 |
23 |
54668 |
57588 |
9661,82 |
57588,00 |
556405093,41 |
93350833,91 |
3316344,00 |
24 |
44824 |
54668 |
-182,18 |
17887,35 |
-3258654,83 |
33188,27 |
319957395,24 |
25 |
45627 |
44824 |
620,82 |
8043,35 |
4993502,76 |
385421,85 |
64695526,54 |
итого |
765105 |
625271 |
-133218 |
36780,65 |
504935629,12 |
4939428122,59 |
6708207969,46 |
45006,18 (29)
36780,65 (30)
0,088 (31)
Таблица 9 – Расчет коэффициента автокорреляции девятого порядка временного ряда
t |
|
- |
|
|
|
||
1 |
4752 |
- |
- |
- |
- |
- |
- |
2 |
30950 |
- |
- |
- |
- |
- |
- |
3 |
6 |
- |
- |
- |
- |
- |
- |
4 |
4100 |
- |
- |
- |
- |
- |
- |
5 |
10412 |
- |
- |
- |
- |
- |
- |
6 |
22167 |
- |
- |
- |
- |
- |
- |
7 |
15271 |
- |
- |
- |
- |
- |
- |
8 |
39011 |
- |
- |
- |
- |
- |
- |
9 |
7498 |
- |
- |
- |
- |
- |
- |
10 |
26499 |
7498 |
-21320,06 |
-29143,25 |
621335911,45 |
454545065,00 |
849329020,56 |
11 |
40950 |
26499 |
-6869,06 |
-10142,25 |
69667749,14 |
47184019,63 |
102865235,06 |
12 |
46782 |
40950 |
-1037,06 |
4308,75 |
-4468443,05 |
1075498,63 |
18565326,56 |
13 |
39356 |
46782 |
-8463,06 |
10140,75 |
-85821801,05 |
71623426,88 |
102834810,56 |
14 |
6259 |
39356 |
-41560,06 |
2714,75 |
-112825179,67 |
1727238795,00 |
7369867,56 |
15 |
50632 |
6259 |
2812,94 |
-30382,25 |
-85463370,36 |
7912617,38 |
923085,06 |
16 |
49703 |
50632 |
1883,94 |
13990,75 |
26357698,58 |
3549220,50 |
195741085,56 |
17 |
16256 |
49703 |
-31563,06 |
13061,75 |
-412268831,61 |
996226914,38 |
170609313,06 |
18 |
40368 |
16256 |
-7451,06 |
-20385,25 |
151891771,83 |
18332,38 |
418417,56 |
19 |
42313 |
40368 |
-5506,06 |
3726,75 |
-20519718,42 |
30316724,25 |
13665,56 |
20 |
24234 |
42313 |
-23585,06 |
5671,75 |
-133768578,23 |
556255173,13 |
32168748,06 |
21 |
38330 |
24234 |
-9489,06 |
-12407,25 |
117733170,70 |
90042307,13 |
153939852,56 |
22 |
57588 |
38330 |
9768,94 |
1688,75 |
16497293,20 |
95432139,88 |
2851876,56 |
23 |
54668 |
57588 |
6848,94 |
57588,00 |
394416612,75 |
46907944,88 |
3316344,00 |
24 |
44824 |
54668 |
-2995,06 |
18026,75 |
-53991242,92 |
8970399,38 |
324963715,56 |
25 |
45627 |
44824 |
-2192,06 |
8182,75 |
-17937099,42 |
4805138,00 |
66957397,56 |
итого |
765105 |
586260 |
-140716 |
36641,25 |
470835942,92 |
4197603716,44 |
6697102191,44 |
47819,06 (32)
36641,25 (33)
0,089 (34)
Таблица 10 – Расчет коэффициента автокорреляции десятого порядка временного ряда
t |
|
- |
|
|
|
||
1 |
4752 |
- |
- |
- |
- |
- |
- |
2 |
30950 |
- |
- |
- |
- |
- |
- |
3 |
6 |
- |
- |
- |
- |
- |
- |
4 |
4100 |
- |
- |
- |
- |
- |
- |
5 |
10412 |
- |
- |
- |
- |
- |
- |
6 |
22167 |
- |
- |
- |
- |
- |
- |
7 |
15271 |
- |
- |
- |
- |
- |
- |
8 |
39011 |
- |
- |
- |
- |
- |
- |
9 |
7498 |
- |
- |
- |
- |
- |
- |
10 |
26499 |
- |
- |
- |
- |
- |
- |
11 |
40950 |
26499 |
-10057,00 |
-12085,13 |
121540185,93 |
101143249,00 |
146050447,68 |
12 |
46782 |
40950 |
-4225,00 |
2365,87 |
-5786,67 |
17850625,00 |
5597325,08 |
13 |
39356 |
46782 |
-11651,00 |
8197,87 |
-95513344,53 |
135745801,00 |
67205017,88 |
14 |
6259 |
39356 |
-44748,00 |
771,87 |
-34539489,60 |
2002383504,00 |
595778,15 |
15 |
50632 |
6259 |
-375,00 |
-32325,13 |
12121925,00 |
140625,00 |
1044914245,02 |
16 |
49703 |
50632 |
-1304,00 |
12047,87 |
-15710418,13 |
1700416,00 |
145151091,22 |
17 |
16256 |
49703 |
-34751,00 |
8,87 |
-386391735,53 |
1207632001,00 |
123629195,95 |
18 |
40368 |
16256 |
-10639,00 |
-22328,13 |
237549010,53 |
113188321,00 |
498545538,15 |
19 |
42313 |
40368 |
-8694,00 |
1783,87 |
-15508936,80 |
75585636,00 |
3182180,28 |
20 |
24234 |
42313 |
-26773,00 |
3728,87 |
-99832947,27 |
716793529,00 |
13906,62 |
21 |
38330 |
24234 |
-12677,00 |
-14350,13 |
181916640,27 |
160706329,00 |
205926326,68 |
22 |
57588 |
38330 |
6581,00 |
-254,13 |
-1672451,47 |
43309561,00 |
64583,75 |
23 |
54668 |
57588 |
3661,00 |
57588,00 |
210829668,00 |
13402921,00 |
3316344,00 |
24 |
44824 |
54668 |
-6183,00 |
16083,87 |
-99446547,60 |
38229489,00 |
258690766,95 |
25 |
45627 |
44824 |
-5380,00 |
6239,87 |
-33570482,67 |
28900,00 |
38935936,02 |
итого |
765105 |
578762 |
-167215 |
38584,13 |
-28224710,53 |
4656756407,00 |
5868770623,45 |
51007,00 (35)
38584,13 (36)
0,005 (37)
4.2 Автокорреляция в остатках: расчет критерия Дарбина – Уотсона
втокорреляция в остатках – это корреляционная зависимость между значениями остатков (εt) за текущий и предыдущие моменты времени. Для определения остатков используется критерий Дарбина – отсона:
(38)
Таким образом, d – это отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.
Расчет коэффициента автокорреляции в остатках первого порядка определяется по формуле:
(39)
где
; . (40)
Критерий Дарбина – отсона и коэффициент автокорреляции связаны соотношением d = 2 (1 - rε).
Таким образом, если в остатках существует полная положительная автокорреляция и = 1, то d = 0. Если в остатках есть полная отрицательная автокорреляция, то = -1 и, следовательно, d = 4. Если автокорреляция остатков отсутствует, то = 0 и d = 2. Значит,
.
лгоритм выявления автокорреляции остатков на основе критерия Дарбина – отсона следующий. Выдвигается гипотеза Н0 об отсутствии автокорреляции остатков. Альтернативные гипотезы Н1 и Н*1 состоят соответственно в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам определяются критические значения критерия Дарбина – отсона dL и dU для заданного числа наблюдений n, числа независимых переменных модели k и ровня значимости α. По этим значениям числовой промежуток [0; 4] разбивают на пять отрезков.
Если фактическое значение критерия Дарбина – отсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу Н0. [10, с.436]
По нашим данным по 25 хозяйствам построим равнение регрессии зависимости валового сбора картофеля (Y) от посевной площади всего (га) (Х1) и наличия тракторов (физ. ед) (Х2):
y = (-3795,88) – (-5,57) * х1 + (-35,4) * х2
Определим по организациям объясненную регрессию t, εt, εt-1, εt- εt-1, , (εt - εt-1)2, (εt)2.
Для этого сначала найдем оценки коэффициента линейного тренда по формуле:
=; (41)
; (42)
; (43)
. (44)
Модель тренда имеет следующий вид:
, (45)
отсюда . (46)
Таким образом, получаем равнение модели тренда =9644,3+1612,3 t, подставляя в него № хозяйства по порядку (t), определим выровненные значения валового сбора . (Приложение 4)
Объясненная регрессия определяется путем подстановки фактических значений Х1 и Х2 в равнение регрессии. Остатки εt рассчитаем по следующей формуле :
εt = yt - t. (47)
εt-1 это те же значения, что и εt, но со сдвигом на один период времени, результаты вычислений оформили в таблицу.
Таблица 6 – Расчет объясненной регрессии и остатков
Период |
t |
εt |
εt-1 |
εt- εt-1 |
(εt - εt-1)2 |
(εt)2 |
|
1 |
2 |
3 |
4 |
5 |
6 |
1 |
-10828,68 |
15580,68 |
- |
- |
- |
242757589,26 |
2 |
-25423,80 |
56373,80 |
15580,68 |
40793,12 |
1664078639,33 |
3178005326,44 |
3 |
-10641,89 |
17196,89 |
56373,8 |
-39176,91 |
1534830277,15 |
295733025,67 |
4 |
-8,86 |
14098,86 |
17196,89 |
-3098,03 |
9597789,88 |
198853,30 |
5 |
-11326,63 |
21738,63 |
14098,86 |
7639,77 |
58366085,65 |
472568034,28 |
6 |
-19168,82 |
41335,82 |
21738,63 |
19597,19 |
384049855,90 |
1708650015,07 |
7 |
-13104,70 |
28375,70 |
41335,82 |
-12960,12 |
167964710,41 |
805180350,49 |
8 |
-56511,30 |
95522,30 |
28375,7 |
67146,60 |
4508665891,56 |
9124509797,29 |
9 |
-21842,16 |
29340,16 |
95522,3 |
-66182,14 |
4380075654,98 |
860844988,83 |
10 |
-31223,28 |
57722,28 |
29340,16 |
28382,12 |
805544735,69 |
1861608,40 |
11 |
-18,95 |
74268,95 |
57722,28 |
16546,67 |
273792288,09 |
5515876934,10 |
12 |
-33982,28 |
80764,28 |
74268,95 |
6495,33 |
42189311,81 |
6522868923,92 |
13 |
-51922,99 |
91278,99 |
80764,28 |
10514,71 |
110559126,38 |
8331854015,42 |
14 |
-13949,34 |
20208,34 |
91278,99 |
-71070,65 |
5051037291,42 |
408377005,56 |
15 |
-23834,48 |
74466,48 |
20208,34 |
54258,14 |
2943945756,26 |
5545256643,59 |
16 |
-24129,69 |
73832,69 |
74466,48 |
-633,79 |
401689,76 |
5451266112,64 |
17 |
-13392,73 |
29648,73 |
73832,69 |
-44183,96 |
195321,28 |
879047190,61 |
18 |
-24359,93 |
64727,93 |
29648,73 |
35079,20 |
1230550272,64 |
4189704922,08 |
19 |
-11,44 |
62304,44 |
64727,93 |
-2423,49 |
5873303,78 |
3881843243,71 |
20 |
-19425,28 |
43659,28 |
62304,44 |
-18645,16 |
347641991,43 |
1906132730,12 |
21 |
-25891,68 |
64221,68 |
43659,28 |
20562,40 |
422812293,76 |
4124424182,02 |
22 |
-50,76 |
90938,76 |
64221,68 |
26717,08 |
713802363,73 |
8269858070,34 |
23 |
-25621,10 |
80289,10 |
90938,76 |
-10649,66 |
113415258,12 |
6446339578,81 |
24 |
-30108,28 |
74932,28 |
80289,1 |
-5356,82 |
28695520,51 |
5614846586,00 |
25 |
-26781,88 |
72408,88 |
74932,28 |
-2523,40 |
6367547,56 |
5243045902,85 |
Итого |
-610130,93 |
1375235,93 |
1302827 |
56828,20 |
26756479977,09 |
92549630630,80 |
Рассчитаем критерий Дарбина – отсона:
=0,29 (48)
Фактическое значение критерия Дарбина – отсона сравнивается с табличным значением при 5% - ом ровне значимости и при n = 25 хозяйств, m = 2 (число факторов х):
- нижняя граница = 1,21
- верхняя граница = 1,55
Значение d меньше нижнего табличного значения 1,21, таким образом, эта модель неадекватна.
Заключение
Основным путем повышения эффективности производства картофеля является снижение себестоимости и повышение общего объема выручки. величение общего объема выручки возможно в основном за счет величения рожайности.
Для повышения качества картофеля, хозяйству необходимо повышать ровень агротехники, своевременно проводить сев и борку, своевременно и в нормативных количествах использовать средства защиты растений, добрения, также лучшить организацию сбыта продукции.
Для рентабельности предприятий необходимо снижать себестоимость путем величения рожайности и снижения материальных затрат. Для величения рожайности необходимо:
1. внедрение новых технологий возделывания картофеля;
2. выведение и использование новых, более стойких сортов;
3. интенсивное использование добрений;
4. проведение мероприятий по обработке почвы;
5. соблюдение севооборота;
6. соблюдение агротехнических сроков проведение работ.
Для снижения материальных затрат необходимо:
1. нормированное и экономное расходование денежных ресурсов;
2. ликвидация излишних штатных единиц;
3. оптимизация использования имеющихся трудовых ресурсов.
Кроме того, большую роль в снижении себестоимости в настоящее время играют социально-экономические факторы, в частности материальная заинтересованность работников в результатах своего труда.
Проведение вышеназванных мероприятий позволит снизить себестоимость продукции, что позволит при продаже картофеля заложить в его стоимость большую долю прибыли. Это позволит предприятию развиваться более интенсивно и обеспечит эффективность производства в целом.
Корреляционно – регрессионный анализ учитывает межфакторные связи, следовательно, дает нам более полное измерение роли каждого фактора: прямое, непосредственное его влияние на результативный признак; косвенное влияние фактора через его влияние на другие факторы; влияние всех факторов на результативный признак. Если связь между факторами несущественна, индексным анализом можно ограничиться. В противном случае его полезно дополнить корреляционно-регрессионным измерением влияния факторов, даже если они функционально связаны с результативным признаком.
Библиографический список
1. Айвазян С.А. Теория вероятностей и прикладная статистика: [Текст] учебник. Т.1/С. А. Айвазян, В. С. Мхитарян. – 2-е изд.; испр. – М.: ЮНИТИ, 2004. – 656с. – (Прикладная статистика. Основы эконометрики. В 2 – х т., Т.1).
2. Алборов Р.А. Оценка производственных запасов и исчисление себестоимости продукции в словиях рынка: [Текст] Экономика сельскохозяйственных и перерабатывающих предприятий. - М.:, 2005. – 427 с.
3. Баделин Б.Ф. Предлагаем грядовую систему земледелия // Картофель и овощи. – 2-е изд.; 2006. – 285 с.
4. Балдин К. В. Эконометрика: [Текст] учебное пособие / К. В. Балдин, О. Ф. Быстров, М. М. Соколов. 2-е изд.; перераб. и доп – М.: ЮНИТИ, 2004. – 254 с.
5. Белебеха И.А. чет и калькуляция себестоимости сельскохозяйственной продукции. - Львов: Высшая школа, 2004.- 176 с.
6. Домбровский В. В. Эконометрика: [Текст] учебник / В. В. Домбровский. – М.: Новый учебник – М, 2006. – 342 с.
7. Доугерти К. Введение в эконометрику: [Текст] учебник: Пер. с англ. / К. Доугерти. – М.: ИНФРА – М, 2003, 2004 – 402 с. – (Университетский учебник)
8. Дубров А.М. Математическая статистика (для бизнесменов и менеджеров): [Текст] учебное пособие с задачами/А. М. Дубров, В. С. Мхитарян, Л. И. Трошин; Моск. гос. н – т экономики, статистики и информатики. – М.: МЭСИ, 2004. – 142 с.
9. Дубров А.М. Многомерные статистические методы: [Текст] учебник. Для экономистов и менеджеров/А. М. Дубров, В. С. Мхитарян, Л. И. Трошин. – М.: Финансы и статистика, 2005
10. Елисеева И.И. Эконометрика: [Текст] учебник/И. И. Елисеева, С В. Курышева, Т. В. Костеева и др.; Под ред. И. И. Елисеевой. – 2-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – 576 с.: ил.
11. Зинченко А.П. Сельскохозяйственные предприятия: экономико-статистический анализ/ А.П. Зинченко.- М.: Финансы и статистика, 2005. – 160 с.
12. Колемаев В. А. Эконометрика: [Текст] учебник / В. А. Колемаев. – М.: ИНФРА – М, 2005. – 160 с.
13. Кремер Н. Ш. Эконометрика: [Текст] учебник / Н. Ш. Кремер, Б. А. Путко; [ВЗФЭИ]; Под ред. Н. Ш. Кремера. – М.: ЮНИТИ, 2004. – 311 с.
14. Лопатников Л.И. Экономико – математический словарь. Словарь современной экономической науки/Л. И. Лопатников. – 4-е изд.; перераб. и доп. – М.: ABF, 2006. – 704 с.
15. Магнус Я. Р. Эконометрика. Начальный курс: [Текст] учебник / Я. Р. Магнус, П. К. Катышева, А. А. Пересецкий. 6-е изд., перераб. и доп – М.: Дело, 2004. – 576 с.
16. Макарова Е. А. Моделирование и прогнозирование экономических процессов: [Текст] учебно – методическое пособие (для студентов экономических специальностей) / Е. А. Макарова; ВЗФЭИ. Волгоградский ф – л. – Волгоград: ВоГУ, 2004. – 246 с.