Четырбоцкий А.Н., Плотников В.В. Ледяной покров Японского моря: исходные данные и процедуры восстановления пропущенных значений
Научная статья
Электронный журнал ИССЛЕДОВАНО В РОССИИ
1872
едяной покров Японского моря: исходные данные и процедуры восстановления пропущенных значений
Четырбоцкий А.Н. (chetyrbotsky@fegi.ru ),Плотников В.В. Дальневосточный институт геологии ДВО РАН
Ледяной покров замерзающих водоемов представляет собой результат взаимодействия атмосферы и гидросферы. В практике океанологических следований для его количественного описания используют ряд параметров. И из них только толщина покрова имеет локальный физический смысл, а остальные - не обладают подобным качеством, а являют собой осредненные по площади района акватории определенные величины. В частности, под термином сплоченность понимают отношение площади занятой льдом к площади самого района [8]. Очевидно, что подобная экзотичность терминов обусловлена спецификой покрова как физической среды. Но поскольку именно эта среда присутствует на акваториях ряда перспективных во всех отношениях морей, то актуальными являются задачи создания репрезентативных выборок количественного описания непосредственно ледяных покровов этих морей.
Основой используемого фактографического материала послужили: карты ледовых авиаразведок над дальневосточными морями; спутниковые снимки ледяного покрова морей, получаемые с ИСЗ серий "NOAA", "Метеор", "Космос" и т. п. ; гидрометеорологические ежемесячники (ежегодники) по дальневосточному региону, содержащие данные прибрежных гидрометеорологических станций и постов. В качестве дополнительной информации привлекались прибрежные радиолокационные и вертолетные наблюдения за льдом, попутные судовые наблюдения и. т. д.
Обычно в течение декады имелось несколько карт или снимком ледяного покрова. В дальнейшем полученные фрагменты ледовой обстановки, включая данные прибрежных наблюдений гидрометеостанций и постов, усреднялись для данной декады. Одновременно проводился и критконтроль получаемой информации. Минимальная дискретность построения карт ледовой обстановки, охватывающих всю акваторию конкретного моря и представляющих практически непрерывный ряд в течение ледового периода, составила одну декаду. Более высокое временное разрешение, учитывая сложность получения ледовой информации (обширные акватории, наличие неблагоприятных погодных условий и т. д.) возможно только для отдельных локальных акваторий, причем, получаемые ряды, в силу уже изложенных причин, будут заведомо неэквидистантны. По средним декадным картам ледовых условий оценивались декадные значения занятых льдом площадей определенных
Электронный журнал ИССЛЕДОВАНО В РОССИИаа 1873 В результате для Японского моря была сформирована информационная матрица размерностью М*Р*К, где М-количество декад, К - размерность пространственной сетки для задания параметров (К=114), а Р-количество фиксируемых для данного моря ледовых параметров. В каждом выделенном районе фиксировались значения общей сплоченности ледяного покрова N (выражается отношением занятой льдом площади к общей площади района акватории), его преобладающей толщины льда (возраста) Н и преобладающем размере льдин (форму) F. Период наблюдений составил 29 лет: с 1961 по 1989 годы.
Именно для указанного периода имеется исчерпывающая и однородная статистическая выборка, составленная на основании результатов регулярных авиаразведок и характеризующая состояния ледяного покрова. Более ранние наблюдения в связи с их исходной неполнотой и низким качеством наблюдений в выборку не включались. Сведения о ледяном покрове, начиная с 1990 года, преимущественно основаны на спутниковых снимках и с целью сохранения однородности выборки на этом этапе также не рассматривались. Вся используемая терминология и обозначения соответствуют "Международной символике для морских ледовых карт и номенклатуре морских льдов" [5]. Расположение и нумерация узлов в точках наблюдений представлены нижеследующим рисунком.
Период ежегодного присутствия ледяного покрова на акватории Японского моря составляет 22 декады. При этом выборку составили наблюдения только тех участков, где непосредственно лед присутствовал. В используемой выборке общее число таких случаев составляет 11130 наблюдений. Следует отметить, что в 1890 случаях некоторая их часть значений параметров была пропущена, а в 514 и вовсе были пропущены все три параметра. Учитывая высокую значимость и уникальность исходных наблюдений, пропущенные в узлах сетки значения параметров восстанавливались с помощью методов непараметрической регрессии [1-4,7,9]. Выбор именно этих методов обусловлен, прежде всего, следующими обстоятельствами. Статистический анализ выборки показал отсутствие значимых линейных
Электронный журнал ИССЛЕДОВАНО В РОССИИаа 1874а 130а 131а 132а 133а 134а 135а 136а 137а 13Ва 139а ШОа Ш1а 1Ц2а ШЗ
52 |
52
51
ЧВ |
ЦБ |
43 |
5D 43 4в 41 ЧБ 45 Щ 43
чг
13Qа 131а 132а 133а 134а 135а 136а 137а 13Ва 139а ШОа Ш1а 1Ц2а ШЗ
Расположение и нумерация районов для снятия значений ледовых характеристик. (Непрерывная линия показывает границу максимального распространения льда).
Формулировка задачи непараметрической регрессии состоит в том, что по значениям функционала на некотором случайном множестве точек (узлах нерегулярной сетки) восстановить значение функционала на другом, заранее заданном и достаточно "плотном"
Электронный журнал ИССЛЕДОВАНО В РОССИИаа 1875 Y(X)= ?аа <o{XtiX)Ytlаа 2>(Х,Х),
X,gO(X)X,gO(X)
где О(Х) - непустая окрестность точки X^R", а>{Х^Х) - неотрицательная весовая функция. Она является монотонно убывающей от значения функционала близости ее аргументов, например со(Х^Х) =|| Xt - X || ~:. В выражении для Y(X) суммирование выполняется по всем выборочным точкам Xt е О(Х) .
В подобной постановке задачи непараметрической регрессии открытым остается вопрос о способе построения окрестности точки X. В практических приложениях в качестве точек этой окрестности выступают к наиболее близких к точке X исходных точек, где к заданное исследователем число. Заметим, что в случае большого числа исходных точек для решения задачи интерполяции требуется существенное время: среди всех узлов исходной сетки для каждой точки X требуется определить к ближайших. Специфика настоящих наблюдений также состоит в том, что исходная выборка содержит 8-мь типов наблюдений: для первого типа отсутствуют пропущенные значения; для второго типа - отсутствует значение сплоченности ]Ч[;третьего - толщина Н;четвертого - форма льдины F. Остальные пять типов содержат пропущенные значения комбинаций этих параметров. Поэтому в зависимости от числа пропущенных в определенном наблюдении параметров значение п варьирует от 4 (пропущены все 3 значения и в наблюдение содержит год и номер декады, пространственные координаты узла) до 7(отсутствие пропущенных значений). При этом наблюдения каждого типа представляет собой выборочную точку пространства соответствующей размерности, а задача непараметрической регрессии сводится к оценке числа и состава сгущений в этом пространстве. Тогда окрестностью точки Xt е 0(Х) является совокупность наблюдений (где
присутствуют все параметры) из ближайшего к точке X. сгущения. Для выявления сгущений
для подобного рода задач целесообразно использовать рекурсивный метод отображения точек многомерного пространства с помощью кривых Пеано [6,2-3,9], который обладает высоким быстродействием и характеризуется высокой надежностью [3,10-11]. Непосредственное восстановление осуществляется в исходном n-мерном пространстве на основании совокупности точек из построенной подобным образом окрестности.
Электронный журнал ИССЛЕДОВАНО В РОССИИаа 1876 Литература
- Айвазян С.А., Енюков И.С.,Мешалкин Л.Д. Прикладная статистика.Исследование зависимостей. - М.: Финансы и статистика, 1985.- 487 с.
- Александров В.В., Горский Н.Д.,Поляков А.О. Рекурсивные алгоритмы обработки и представления данных.- Препр. Ленинград: ЛНИВ - АН СССРД979.-53 с.
- Александров В.В., Горский Н.Д. Алгоритмы и программы структурного метода обработки данных.- Л. : Наука, 1983.-208 с.
- Веселов В.В., Гонтов Д.П. ,Пустыльников Л.М. Вариационный подход к задачам интерполяции физических полей.- М.:Наука, 1983.-119 с.
Электронный журнал ИССЛЕДОВАНО В РОССИИаа 1877а Л. Хидрометеоиздат, 1984.-56 с.
- Стронгин Р.Г. Численные методы в многоэкстремальных задачах (информационно-статистические алгоритмы).- М.: Наука, 1978.-240 с.
- Суховей В.Ф. Восстановление полей гидрологических элементов по экспедиционным наблюдениям//Мор. гидрофиз. исслед.-1971.-№ 3.-с.91-116
- Тимохов Л.А., Хейсин Д.Е. Динамика морских льдов (математические модели). -Л.,Гидрометеоиздат,1987.-272 с.
9. Четырбоцкий А.Н. Методы и алгоритмы решения задач снижения размерности
пространства описания.- Владивосток,ДВО АН СССР, 1991.-95 с.
10. Четырбоцкий А.Н. Пакет прикладных программ для решения задач снижения
размерности пространства описания // Управляющие системы и машины. - Киев, Наукова
думка, Т. 1(111), 1991 .-с. 103-106
11.а Шемендюк Г.П., Бабцев В.А., Четырбоцкий А.Н. Статистическое исследование износов
наружной обшивки корпусов судна ледового плавания // Техническая эксплуатация флота.-
М.Судостроение, № 23(763), 1991.-23 с.
Все научные статьи