Авторефераты по всем темам >> Авторефераты по разным специальностям УДК 622.692.4:621.193/197 На правах рукописи Худяков Дмитрий Сергеевич ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ЭКСПЛУАТАЦИИ РАЗНОРОДНЫХ СОЕДИНЕНИЙ СИЛЬФОННЫХ КОМПЕНСАТОРОВ С ТРУБОПРОВОДАМИ Специальность 05.26.03 Пожарная и промышленная безопасность (нефтегазовый комплекс) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Уфа 2009 Работа выполнена в Государственном унитарном предприятии Институт проблем транспорта энергоресурсов (ГУП ИПТЭР)
Защита диссертации состоится 30 апреля 2009 г. в 1100 часов на заседании диссертационного совета Д 222.002.01 при Государственном унитарном предприятии Институт проблем транспорта энергоресурсов по адресу: 450055, г. Уфа, пр. Октября, 144/3. С диссертацией можно ознакомиться в библиотеке ГУП ИПТЭР. Автореферат разослан 30 марта 2009 г. Ученый секретарь диссертационного совета доктор технических наук Л.П. Худякова ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность работы Техническое усовершенствование трубопроводов в нефтегазовой отрасли с целью повышения их надежности и снижения расходов на строительство и эксплуатацию и в настоящее время не потеряло своей актуальности. Важным резервом снижения капитальных затрат, повышения надежности работы трубопроводов и оборудования является применение в них специальных устройств для компенсации температурных деформаций. В последние годы для этих целей стали применяться металлорукава и сильфонные компенсаторы, имеющие значительные технико-экономические преимущества перед компенсирующими устройствами других типов. Простота изготовления, большая надежность (минимальное число сварных швов), высокие эксплуатационные и технико-экономические показатели создали возможность их широкого использования в различных отраслях промышленности. Они не только компенсируют изменения длин трубопроводов из-за перепада температур, но и выполняют другие важные функции: обеспечивают эластичность соединений в трубопроводах, подверженных опасности разрушения вследствие оседания почвы или перемещения зданий, аппаратов и машин; выполняют роли прижимного (силового) элемента; компенсационного элемента в трубопроводах с защитным кожухом; устройства для снижения вибрационных нагрузок и т.д. Сильфонные компенсаторы герметичны и температуростойки, обладают антикоррозионными свойствами. Кроме того, их конструкции позволяют компенсировать нагрузки для каждого отдельного случая в зависимости от величины и частоты воспринимаемых движений и в соответствии с требуемым сроком службы. Осевые, поперечные и угловые компенсаторы выпускаются в стандартном исполнении с диаметрами условных проходов от 20 до 3000 мм. Основным гибким элементом компенсатора является металлический сильфон, который изготавливается из высококачественных нержавеющих сталей и материалов, выбор которых зависит от условий эксплуатации. Чаще всего применяются компенсаторы с многослойными сильфонами. Возможность варьирования общей толщиной и числом слоев определяет их применение, прежде всего, при высоком давлении, причем в результате их многослойности сохраняется высокая эластичность при небольшой изгибной жесткости. Несмотря на ряд неоспоримых преимуществ, применение сильфонных компенсаторов осуществляется не в полном объеме в силу их недостаточного предложения на рынке услуг, а также традиционного подхода проектных организаций к разработке трубопроводных систем. Это связано, в частности, и с тем, что до настоящего времени отсутствуют единые принципы проектирования новых конструкций компенсаторов, наблюдается большой разброс в инженерных расчетах конструктивных и эксплуатационных характеристик, недостаточно изучены факторы, влияющие на работоспособность компенсаторов в различных условиях эксплуатации и т.д. Особый интерес представляют вопросы обеспечения безопасности эксплуатации разнородных соединений сильфонных компенсаторов с трубопроводами, изготовленных из различных сталей. Для таких соединений характерна выраженная неоднородность свойств, обусловленная диффузионными и закалочными процессами при сварке и эксплуатации. В этом направлении известны фундаментальные работы научных школ профессоров В.Н. Земзина, Н.О. Окерблома, О.А. Бакши, Р.З. Шрона, М.Х.аШоршорова, Ю.Н. Готальского, А.В. Бакиева и др. Тем не менее, остаются нерешенными ряд проблем, связанных с технологическим обеспечением безопасности разнородных соединений, а также оценкой и повышением их ресурса при эксплуатации. Цель работы - обеспечение безопасности эксплуатации разнородных соединений патрубков сильфонных компенсаторов с трубопроводами. Для решения поставленной цели были сформулированы следующие основные задачи:
Методы решения поставленных задач Проблемы оценки напряженного состояния и несущей способности разнородных соединений сильфонных компенсаторов решались с применением широко используемых подходов теории пластичности неоднородных тел. Остаточный ресурс определялся на базе полученных автором результатов по несущей способности и напряженному состоянию с использованием известных критериев длительной прочности, развиваемых в Институте машиноведения РАН им. А.А. Благонравова, ИПТЭР, УГНТУ и др. Научная новизна результатов работы 1. Установлены и описаны основные закономерности напряженного состояния металлов в окрестности линии сплавления разнородных соединений патрубков сильфонного компенсатора с трубопроводом. Установлено, что разнородность соединения обуславливает различную деформационную способность металла в окрестности соединения вследствие реализации диффузионных прослоек с отличающимися по величине коэффициентами жесткости напряженного состояния. 2. Получены формулы для определения допускаемых параметров диффузионных мягких (ДМП) и твердых (ДТП) прослоек, образующихся в окрестности линии сплавления разнородных соединений, при которых их наличие не оказывает заметного влияния на характеристики работоспособности и безопасности эксплуатации участка трубопровода с компенсатором. 3. Разработаны методические рекомендации по расчетной оценке ресурса безопасной эксплуатации участка трубопровода с сильфонным компенсатором с использованием критериев длительной прочности. На защиту выносятся результаты исследований, имеющие научную и практическую ценность, а именно:
Практическая ценность результатов работы
Достоверность результатов исследований Решение основных задач базируется на современных апробированных подходах теории оболочек, теории пластичности и упругости. В работе учитываются современные достижения в области промышленной безопасности и оценки остаточного ресурса. Большинство полученных результатов согласуются с общими представлениями теории пластичности неоднородных тел и данными других авторов. Апробация работы Результаты работы докладывались на научно-практических конференциях и научно-технических семинарах по вопросам обеспечения надежности и безопасности нефтегазопромыслового оборудования и трубопроводов в ГУПаИПТЭР (г. Уфа, 20072009 гг.) и на секции Безопасность нефтегазового оборудования и трубопроводов Ученого Совета ГУП ИПТЭР (протокол № 2 от 21.01.09 г.) Публикации Основные результаты диссертационной работы опубликованы в 8 научных трудах (два в ведущих рецензируемых научных журналах, рекомендованных ВАК Министерства образования и науки РФ), в том числе разработаны Методические рекомендации (1) и стандарт предприятия. Структура и объем работы Диссертационная работа состоит из пяти глав, основных выводов и рекомендаций, библиографического списка использованной литературы, включающего 116 наименований. Работа изложена на 139 страницах машинописного текста, содержит 60 рисунков, 7 таблиц. КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ Во введении обоснована актуальность работы, сформулированы её цель и основные задачи, обозначены основные положения, выносимые на защиту, показаны научная новизна и практическая ценность результатов работы. В первой главе освещены сравнительные характеристики сильфонных компенсаторов, применяемых в нефтегазовой отрасли. Рассмотрены особенности их производства, основные технические требования к ним. Показана значительная роль разнородных соединений сильфонных компенсаторов с трубопроводом в обеспечении их безопасной эксплуатации. Вторая глава посвящена анализу характеристик работоспособности разнородных соединений сильфонных компенсаторов с трубопроводами. Во многих случаях патрубки сильфонных компенсаторов привариваются к трубопроводам, изготовленным из феррито-перлитных сталей типа 20, 20К, Ст3 и др. При этом патрубки сильфонных компенсаторов изготавливаются из аустенитных сталей типа 08Х18Н10Т. Различие содержания углерода в металлах патрубков и трубопровода в процессе сварки и последующей эксплуатации в окрестности линии сплавления приводит к образованию науглероженных и обезуглероженных участков (диффузионных прослоек). Схематично этот факт изображен на рисунке 1. б) Рисунок 1 Схемы разнородного соединения (а) и распределения твердости (б) в окрестности его линии сплавления Очевидно, что обезуглероженные участки разнородного соединения имеют более низкие прочностные характеристики, и их будем обозначать символом ДМП (диффузионные мягкие прослойки), а науглероженные участки, имеющие повышенную твердость (прочность), - ДТП (диффузионные твердые прослойки). В плане работоспособности таких соединений наибольшую опасность представляют диффузионные твердые прослойки, предопределяющие их деформационную способность. Степень превышения твердости ДТП для рассматриваемых соединений ( - твердость основного металла) в значительной мере зависит от содержания углерода в стали (В.Н. Земзин). Чем ниже содержание углерода в стали, тем меньше степень неоднородности ДМП. В разнородных соединениях с малоуглеродистой сталью (армко-железо) ДМП практически отсутствуют. Анализ литературных данных показывает, что для рассматриваемых в работе разнородных сочетаний , (1) где - содержание углерода в стали, %. Наибольший рост от С отмечается в области С = 0Е 0,3. При Са>а0,3 величина изменяется незначительно, например для инструментальной стали (С = 0,69 %) 2,25. Особый интерес представляет оценка ширины ДТП и ДМП. После выполнения присоединения компенсатора к трубопроводу значения ширины ДТП и ДМП достаточно малы. Например, для сталей с содержанием углерода от 0,06 до 0,32 % значение ширины ДТП (ДТП) составляет около 0,1аЕа0,2 мм (В.Н. Земзин). При толщине трубы около а=а10амм относительная ширина ДТП (ДТП= ДТП/ ) изменяется в пределах а=а0,01аЕа0,02. Необходимо отметить, что после длительной эксплуатации при повышенных температурах величина hДТП может увеличиваться примерно на порядок. На основании выполненного анализа литературных данных сделан вывод о том, что существующие методы оценки допускаемых ширин ДМП и ДТП дают завышенные значения. Поэтому возникает необходимость проведения дополнительных исследований по оценке допускаемых величин [ДМП] и [ДТП]. В третьей главе представлены результаты исследований напряженного состояния в окрестности линии сплавления разнородных кольцевых соединений патрубков сильфонного компенсатора с трубопроводом. Авторефераты по всем темам >> Авторефераты по разным специальностям |
Blog
Home - Blog